نتایج جستجو برای: arima process cohort generalize linear model lee
تعداد نتایج: 3645117 فیلتر نتایج به سال:
Recently, Lee et al. [Young-ju Lee, Jinbiao Wu, Jinchao Xu, Ludmil Zikatanov, On the convergence of iterative methods for semidefinite linear systems, SIAM J. Matrix Anal. Appl. 28 (2006) 634–641] introduce new criteria for the semi-convergence of general iterative methods for semidefinite linear systems based on matrix splitting. The new conditions generalize the classical notion of P-regulari...
Considering the time-series ARIMA(p,d, q) model and fuzzy regression model, this paper develops a fuzzy ARIMA (FARIMA) model and applies it to forecasting the exchange rate of NT dollars to US dollars. This model includes interval models with interval parameters and the possibility distribution of future values is provided by FARIMA. This model makes it possible for decision makers to forecast ...
Demand planning for electricity consumption is a key success factor for the development of any countries. However, this can only be achieved if the demand is forecasted accurately. In this research, different forecasting methods—autoregressive integrated moving average (ARIMA), artificial neural network (ANN) and multiple linear regression (MLR)—were utilized to formulate prediction models of t...
OBJECTIVE Injury is currently an increasing public health problem in China. Reducing the loss due to injuries has become a main priority of public health policies. Early warning of injury mortality based on surveillance information is essential for reducing or controlling the disease burden of injuries. We conducted this study to find the possibility of applying autoregressive integrated moving...
The aim of this research is to analyze ANFIS performance for prediction of financial time series data. Financial time series data is usually characterized by volatility clustering, persistence, and leptokurtic data behavior. The financial time series data are usually non-stationary and non-linear. ARIMA has a good performance to predict linear time series data, but its performance is decreasing...
This study sets out a backtesting framework applicable to the multiperiod-ahead forecasts from stochastic mortality models and uses it to evaluate the forecasting performance of six different stochastic mortality models applied to English & Welsh male mortality data. The models considered are the following: Lee-Carter’s 1992 one-factor model; a version of Renshaw-Haberman’s 2006 extension of th...
Penalized splines are widespread tools for the estimation of trend and cycle, since they allow a data driven estimation of the penalization parameter by the incorporation into a linear mixed model. Based on the equivalence of penalized splines and the Hodrick-Prescott filter, this paper connects the mixed model framework of penalized splines to the WienerKolmogorov filter. In the case that tren...
This paper investigates the ability of a new hybrid forecasting model based on empirical mode decomposition (EMD), cluster analysis and Autoregressive Integrated Moving Average (ARIMA) model to improve the accuracy of fishery landing forecasting. In the first step, the original fishery landing was decomposed into a finite number of Intrinsic Mode Functions (IMFs) and a residual by EMD. The seco...
drought is random and nonlinear phenomenon and using linear stochastic models, nonlinear artificial neural network and hybrid models is advantaged for drought forecasting. this paper presents the performances of autoregressive integrated moving average (arima), direct multi-step neural network (dmsnn), recursive multi-step neural network (rmsnn), hybrid stochastic neural network of directive ap...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید