نتایج جستجو برای: arma
تعداد نتایج: 2541 فیلتر نتایج به سال:
For a given time series observation sequence, we can estimate the parameters of the AutoRegression Moving Average (ARMA) model, thereby representing a potentially long time series by a limited dimensional vector. In many applications, these parameter vectors will be separable into different groups, due to the different underlying mechanisms that generate differing time series. We can then use c...
Discrete time-varying autoregressive moving average (ARMA) models are used to describe realistic earthquake ground motion time histories. Both amplitude and frequency nonstationarities are incorporated in the model. An iterative Kalman filtering scheme is introduced to identify the time-varying parameters of an ARMA model from an actual earthquake record. Several model verification tests are pe...
This paper investigates the issue on how to effectively model time series with a new algorithm given by a Multilayer Feedforward Neural Network (MLFNN) and an Autoregressive Moving Average (ARMA). The static nonlinear part is modeled by MLFNN, and the linear part is modeled by an ARMA model. The algorithm is developed for estimating the weights of the MLFNN and the parameters of ARMA model. To ...
This paper investigates the asymptotic theory for a vector autoregressive moving average–generalized autoregressive conditional heteroskedasticity ~ARMAGARCH! model+ The conditions for the strict stationarity, the ergodicity, and the higher order moments of the model are established+ Consistency of the quasimaximum-likelihood estimator ~QMLE! is proved under only the second-order moment conditi...
There is a great demand for statist ical modeling of phenomena tha t evolve in bo th space and time. Practical examples are those in Haslett and Raf tery (1989), Handcock and Wallis (1994), Cressie and Huang (1999), Brix and Diggle (2001), Stroud et al. (2001), De Iaco et al. (2002), Gneit ing (2002), and Hartfield and Gunst (2003), to mention but a few. Two commonly used tools to describe the ...
This paper presents a unified framework of stationary ARMA processes for discrete-valued time series based on Pegram’s [Pegram, G.G.S., 1980. An autoregressive model for multilag markov chains. J. Appl. Probab. 17, 350–362] mixing operator. Such a stochastic operator appears to be more flexible than the currently popular thinning operator to construct Box and Jenkins’ type stationary ARMAproces...
Using a perturbation matrix, we introduced a hyperplane used to define a generalized null-spectrum, based on both the signal and noise subspaces, while the MUSIC and Min-Norm null-spectra are defined based only on the noise subspace. With the generalized nullspectrum, we derived the upper and lower bounds of a class of the generalized null-spectrum, called the maximum and minimum null-spectra, ...
In the context of carbon neutrality and air pollution prevention, it is great research significance to achieve high-accuracy prediction quality index. this paper, Beijing used as study area; data from January 2014 December 2019 are training set, 2020 2021 test set. The CEEMDAN-ARMA-LSTM model constructed in paper for analysis. CEEMDAN decompose improve information utilization. smooth non-white ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید