نتایج جستجو برای: chebyshev wavelet
تعداد نتایج: 42668 فیلتر نتایج به سال:
This paper reviews the notion of interpolation of a smooth function by means of Chebyshev polynomials, and the well-known associated results of spectral accuracy when the function is analytic. The rate of decay of the error is proportional to ρ−N , where ρ is a bound on the elliptical radius of the ellipse in which the function has a holomorphic extension. An additional theorem is provided to c...
In this paper, we study the asymptotics of the discrete Chebyshev polynomials tn(z,N) as the degree grows to infinity. Global asymptotic formulas are obtained as n → ∞, when the ratio of the parameters n/N = c is a constant in the interval (0, 1). Our method is based on a modified version of the Riemann-Hilbert approach first introduced by Deift and Zhou.
Abstract Classical electric circuits consists of resistors, inductors and capacitors which have irreversible lossy properties that are not taken into account in classical analysis. FDEs can be interpreted as basic memory operators generally used to model the or defects. Therefore, employing fractional differential terms circuit equations provides accurate modelling those elements. In this paper...
It is commonly accepted that fractional differential equations play an important role in the explanation of many physical phenomena. For this reason we need a reliable and efficient technique for the solution of fractional differential equations. This paper deals with the numerical solution of a class of fractional differential equation. The fractional derivatives are described...
Amongst satisfactory techniques for the numerical solution of differential equations, the use of Chebyshev series is often avoided because of the tedious nature of the calculations. A systematic application of the Chebyshev method is given for certain fourth order boundary value problems in which the derivatives have polynomial coefficients. Numerical results for various problems using the Cheb...
In this paper, a super spectral viscosity method using the Chebyshev differential operator of high order Ds = ( √ 1− x2∂x) is developed for nonlinear conservation laws. The boundary conditions are treated by a penalty method. Compared with the second-order spectral viscosity method, the super one is much weaker while still guaranteeing the convergence of the bounded solution of the Chebyshev–Ga...
presents a modiied Chebyshev pseudospec-tral method, involving mapping of the Chebyshev points, for solving rst-order hyperbolic initial boundary value problems. It is conjectured that the time step restriction for the modiied method is O(N ?1) compared to O(N ?2) for the standard Chebyshev pseudospectral method, where N is the number of discretization points in space. In the present paper we s...
In this article a modification of the Chebyshev collocation method is applied to the solution of space fractional differential equations.The fractional derivative is considered in the Caputo sense.The finite difference scheme and Chebyshev collocation method are used .The numerical results obtained by this way have been compared with other methods.The results show the reliability and efficiency...
1. R. L. Adler & T. J. Rivlin. "Ergodic and Mixing Properties of Chebyshev Polynomials." Proa. Amer. Math. Soc. 15 (1964) :79'4-7'96. 2. P. Johnson & A. Sklar. "Recurrence and Dispersion under Iteration of Cebysev Polynomials." To appear. 3. C.H. Kimberling. "Four Composition Identities for Chebyshev Polynomials." This issue, pp. 353-369. 4. T. J. Rivlin. The Chebyshev Polynomials. New York: Wi...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید