نتایج جستجو برای: cohen macaulay type

تعداد نتایج: 1351039  

2013
Giulio Caviglia Alexandru Constantinescu Matteo Varbaro Jürgen Eckhoff

We show that monomial ideals generated in degree two satisfy a conjecture by Eisenbud, Green and Harris. In particular we give a partial answer to a conjecture of Kalai by proving that h-vectors of flag Cohen-Macaulay simplicial complexes are h-vectors of Cohen-Macaulay balanced simplicial complexes.

‎In this paper‎, ‎we give some necessary conditions for an $r$-partite graph such that the edge ring of the graph is Cohen-Macaulay‎. ‎It is proved that if there exists a cover of an $r$-partite Cohen-Macaulay graph by disjoint cliques of size $r$‎, ‎then such a cover is unique‎.

Journal: :J. Comb. Theory, Ser. A 2008
Christopher A. Francisco Huy Tài Hà

Let G be a simple (i.e., no loops and no multiple edges) graph. We investigate the question of how to modify G combinatorially to obtain a sequentially CohenMacaulay graph. We focus on modifications given by adding configurations of whiskers to G, where to add a whisker one adds a new vertex and an edge connecting this vertex to an existing vertex in G. We give various sufficient conditions and...

1998
Gregor Kemper

The theorem of Hochster and Roberts says that for any module V of a linearly reductive group G over a eld K the invariant ring KV ] G is Cohen-Macaulay. We prove the following converse: if G is a reductive group and KV ] G is Cohen-Macaulay for any module V , then G is linearly reductive.

2008
SARFRAZ AHMAD DORIN POPESCU

Let I be a monomial ideal of the polynomial ring S = K[x1, . . . , x4] over a field K. Then S/I is sequentially Cohen-Macaulay if and only if S/I is pretty clean. In particular, if S/I is sequentially Cohen-Macaulay then I is a Stanley ideal.

Journal: :Journal of the Mathematical Society of Japan 2019

Journal: :J. Comb. Theory, Ser. A 2008
Adam Van Tuyl Rafael H. Villarreal

Associated to a simple undirected graph G is a simplicial complex ∆G whose faces correspond to the independent sets of G. We call a graph G shellable if ∆G is a shellable simplicial complex in the non-pure sense of Björner-Wachs. We are then interested in determining what families of graphs have the property that G is shellable. We show that all chordal graphs are shellable. Furthermore, we cla...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید