نتایج جستجو برای: coincidence points

تعداد نتایج: 274793  

2008
Ulrich Koschorke ULRICH KOSCHORKE

In classical fixed point and coincidence theory the notion of Nielsen numbers has proved to be extremely fruitful. We extend it to pairs (f1, f2) of maps between manifolds of arbitrary dimensions, using nonstabilized normal bordism theory as our main tool. This leads to estimates of the minimum numbers MCC(f1, f2) (and MC(f1, f2), resp.) of pathcomponents (and of points, resp.) in the coinciden...

1997
MICHAEL BAAKE

Discrete point sets S such as lattices or quasiperiodic Delone sets may permit, beyond their symmetries, certain isometries R such that S ∩ RS is a subset of S of finite density. These are the so-called coincidence isometries. They are important in understanding and classifying grain boundaries and twins in crystals and quasicrystals. It is the purpose of this contribution to introduce the corr...

2006
ULRICH KOSCHORKE

In classical fixed point and coincidence theory, the notion of Nielsen numbers has proved to be extremely fruitful. Here we extend it to pairs ( f1, f2) of maps between manifolds of arbitrary dimensions. This leads to estimates of the minimum numbers MCC( f1, f2) (and MC( f1, f2), resp.) of path components (and of points, resp.) in the coincidence sets of those pairs of maps which are ( f1, f2)...

2008
Ulrich Koschorke ULRICH KOSCHORKE

In classical fixed point and coincidence theory the notion of Nielsen numbers has proved to be extremely fruitful. Here we extend it to pairs (f1, f2) of maps between manifolds of arbitrary dimensions. This leads to estimates of the minimum numbers MCC(f1, f2) (and MC(f1, f2), resp.) of pathcomponents (and of points, resp.) in the coincidence sets of those pairs of maps which are homotopic to (...

2004
S. V. R. NAIDU

Many authors have been using the Hausdorffmetric to obtain fixed point and coincidence point theorems for multimaps on a metric space. In most cases, the metric nature of the Hausdorff metric is not used and the existence part of theorems can be proved without using the concept of Hausdorff metric under much less stringent conditions on maps. The aim of this paper is to illustrate this and to o...

1999
Peter Saveliev PETER SAVELIEV

For a given pair of maps f, g : X → M from an arbitrary topological space to an n-manifold, the Lefschetz homomorphism is a certain graded homomorphism Λfg : H(X) → H(M) of degree (−n). We prove a Lefschetztype coincidence theorem: if the Lefschetz homomorphism is nontrivial then there is an x ∈ X such that f(x) = g(x).

Journal: :iranian journal of fuzzy systems 2006
b. davvaz p. corsini

small polygroups are multi-valued systems that satisfy group-likeaxioms. using the notion of “belonging ($epsilon$)” and “quasi-coincidence (q)” offuzzy points with fuzzy sets, the concept of ($epsilon$, $epsilon$ $vee$ q)-fuzzy subpolygroups isintroduced. the study of ($epsilon$, $epsilon$ $vee$ q)-fuzzy normal subpolygroups of a polygroupare dealt with. characterization and some of the fundam...

Journal: :Int. J. Math. Mathematical Sciences 2005
Zeqing Liu Haiyan Gao Shin Min Kang Yong Soo Kim

The existence of coincidence and fixed points for continuous mappings in compact Hausdorff spaces is established. Some equivalent conditions of the existence of fixed and common fixed points for any continuous mapping and a pair of mappings in compact Hausdorff spaces are given, respectively. Our results extend, improve, and unify the corresponding results due to Jungck, Liu, and Singh and Rao.

2010
Bhavana Deshpande

The existence of coincidence points and common fixed points for six mappings satisfying certain contractive conditions without exploiting the notion of continuity in cone metric spaces is established. Our results generalize, improve and extend several well known comparable results in the literature.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید