نتایج جستجو برای: crest complete

تعداد نتایج: 371190  

Journal: :Development 2013
Raymond Teck Ho Lee Ela W Knapik Jean Paul Thiery Thomas J Carney

The neural crest is a multipotent stem cell population that arises from the dorsal aspect of the neural tube and generates both non-ectomesenchymal (melanocytes, peripheral neurons and glia) and ectomesenchymal (skeletogenic, odontogenic, cartilaginous and connective tissue) derivatives. In amniotes, only cranial neural crest generates both classes, with trunk neural crest restricted to non-ect...

Journal: :Development 1994
G N Serbedzija M Bronner-Fraser S E Fraser

The availability of naturally occurring and engineered mutations in mice which affect the neural crest makes the mouse embryo an important experimental system for studying neural crest cell differentiation. Here, we determine the normal developmental potential of neural crest cells by performing in situ cell lineage analysis in the mouse by microinjecting lysinated rhodamine dextran (LRD) into ...

Journal: :Development 2004
Alejandro Barrallo-Gimeno Jochen Holzschuh Wolfgang Driever Ela W Knapik

Neural crest progenitor cells are the main contributors to craniofacial cartilage and connective tissue of the vertebrate head. These progenitor cells also give rise to the pigment, neuronal and glial cell lineages. To study the molecular basis of neural crest differentiation, we have cloned the gene disrupted in the mont blanc (mob(m610)) mutation, which affects all neural crest derivatives. U...

Journal: :Development 1988
C A Erickson

We have determined the pathways taken by the trunk neural crest of quail and examined the parameters that control these patterns of dispersion. Using antibodies that recognize migratory neural crest cells (HNK-1), we have found that the crest cells take three primary pathways: (1) between the ectoderm and somites, (2) within the intersomitic space and (3) through the anterior somite along the b...

Journal: :Development 1991
R Perris D Krotoski M Bronner-Fraser

This study examines the spatiotemporal distribution of collagen (Col) types I-V and IX during neural crest development in vivo and their ability to support neural crest cell movement in vitro. Col I, III and IV were widespread throughout the embryo, including the neural crest migratory pathways, whereas Col II, V and IX preferentially localized to regions from which migrating neural crest cells...

Journal: :Science 2016
Marcos Simoes-Costa Marianne E Bronner

Neural crest populations along the embryonic body axis of vertebrates differ in developmental potential and fate, so that only the cranial neural crest can contribute to the craniofacial skeleton in vivo. We explored the regulatory program that imbues the cranial crest with its specialized features. Using axial-level specific enhancers to isolate and perform genome-wide profiling of the cranial...

Journal: :Development 1991
P Hunt D Wilkinson R Krumlauf

The structures of the face in vertebrates are largely derived from neural crest. There is some evidence to suggest that the form of the facial pattern is determined by the crest, and that it is specified before migration as to the structures that is is able to form. The neural crest is able to control the form of surrounding, non-neural crest tissues by an instructive interaction. Some of this ...

Journal: :Development 1991
A Lumsden N Sprawson A Graham

A vital dye analysis of cranial neural crest migration in the chick embryo has provided a positional fate map of greater resolution than has been possible using labelled graft techniques. Focal injections of the fluorescent membrane probe DiI were made into the cranial neural folds at stages between 3 and 16 somites. Groups of neuroepithelial cells, including the premigratory neural crest, were...

2014
Zuming Zhang Yu Shi Shuhua Zhao Jiejing Li Chaocui Li Bingyu Mao

In vertebrates, the neural plate border (NPB) is established by a group of transcription factors including Dlx3, Msx1 and Zic1. The crosstalk between these NPB specifiers governs the separation of the NPB region into placode and neural crest (NC) territories and also their further differentiation. Understanding the mechanisms of NPB formation and NC development is critical for our knowledge of ...

Journal: :International Journal of Biological Sciences 2006
Hiroshi Wada Kaz Makabe

It is now accepted that ancestral vertebrates underwent two rounds of genome duplication. Here we test the possible utility of these genome duplication events as a reference time for the evolutionary history of vertebrates, by tracing the molecular evolutionary history of the genes involved in vertebrate neural crest development. For most transcription factors that are involved in neural crest ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید