نتایج جستجو برای: edge 2 rainbow domination number
تعداد نتایج: 3487625 فیلتر نتایج به سال:
A graph G is 3-domination critical if its domination number γ is 3 and the addition of any edge decreases γ by 1. Let G be a 3-domination critical graph with toughness more than one. It was proved G is Hamiltonconnected for the cases α ≤ δ (Discrete Mathematics 271 (2003) 1-12) and α = δ + 2 (European Journal of Combinatorics 23(2002) 777-784). In this paper, we show G is Hamilton-connected for...
For any edge of an isolate free graph , , 〈 〉 is the subgraph induced by the vertices adjacent to u and v in G. We say that an edge x, edominates an edge y if ∈ 〈 〉 . A set ⊆ is an Edge-Edge Dominating Set (EED-set) if every edge in is e-dominated by an edge in L. The edgeedge domination number is the cardinality of a minimum EED-set. We find the relation ship between the new parameter and some...
A rainbow subgraph of an edge-coloured graph is a subgraph whose edges have distinct colours. The colour degree of a vertex v is the number of different colours on edges incident with v. Wang and Li conjectured that for k 4, every edge-coloured graph with minimum colour degree k contains a rainbow matching of size at least k/2 . A properly edge-coloured K4 has no such matching, which motivates ...
The open neighborhood NG(e) of an edge e in a graph G is the set consisting of all edges having a common end-vertex with e and its closed neighborhood is NG[e] = NG(e) ∪ {e}. Let f be a function on E(G), the edge set of G, into the set {−1, 1}. If ∑x∈NG[e] f(x) ≥ 1 for at least a half of the edges e ∈ E(G), then f is called a signed edge majority dominating function of G. The minimum of the val...
For any $k in mathbb{N}$, the $k$-subdivision of graph $G$ is a simple graph $G^{frac{1}{k}}$, which is constructed by replacing each edge of $G$ with a path of length $k$. In [Moharram N. Iradmusa, On colorings of graph fractional powers, Discrete Math., (310) 2010, No. 10-11, 1551-1556] the $m$th power of the $n$-subdivision of $G$ has been introduced as a fractional power of $G$, denoted by ...
An r-edge coloring of a graph G is a mapping h : E(G) → [r], where h(e) is the color assigned to edge e ∈ E(G). An exact r-edge coloring is an r-edge coloring h such that there exists an e ∈ E(G) with h(e) = i for all i ∈ [r]. Let h be an edge coloring of G. We say G is rainbow if no two edges in G are assigned the same color by h. The anti-Ramsey number, AR(G,n), is the smallest integer r such...
A path in an edge-colored graph, where adjacent edges may be colored the same, is a rainbow path if no two edges of it are colored the same. For any two vertices u and v of G, a rainbow u− v geodesic in G is a rainbow u− v path of length d(u, v), where d(u, v) is the distance between u and v. The graph G is strongly rainbow connected if there exists a rainbow u − v geodesic for any two vertices...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید