نتایج جستجو برای: hopf algebra
تعداد نتایج: 76714 فیلتر نتایج به سال:
The main result in this paper states that every strongly graded bialgebra whose component of grade 1 is a finite-dimensional Hopf algebra is itself a Hopf algebra. This fact is used to obtain a group cohomology classification of strongly graded Hopf algebras, with 1-component of finite dimension, from known results on strongly graded bialgebras. 2002 Elsevier Science (USA)
The aim of this section is to define some generalization of the notion of formal group. More precisely, we consider the analog of formal groups with coefficients belonging to a Hopf algebra. We also study some example of a formal group over a Hopf algebra, which generalizes the formal group of geometric cobordisms. Recently some important connections between the Landweber-Novikov algebra and th...
we introduce bidendriform bialgebras, which are bialgebras such that both product and coproduct can be split into two parts satisfying good compatibilities. For example, the Malvenuto-Reutenauer Hopf algebra and the non-commutative Connes-Kreimer Hopf algebras of planar decorated rooted trees are bidendriform bialgebras. We prove that all connected bidendriform bialgebras are generated by their...
The Multiplier Hopf Group Coalgebra was introduced by Hegazi in 2002 [7] as a generalization of Hope group caolgebra, introduced by Turaev in 2000 [5], in the non-unital case. We prove that the concepts introduced by A.Van Daele in constructing multiplier Hopf algebra [3] can be adapted to serve again in our construction. A multiplier Hopf group coalgebra is a family of algebras A = {A α } α∈π ...
Using set-theoretic considerations, we show that the forest formula for overlapping divergences comes from the Hopf algebra of rooted trees. Motivation and Introduction The process of renormalization is governed by the forest formula, as derived for example in [1]. The underlying combinatorics is directly related to the Hopf algebra structure of rooted trees. This is evident in the case of Feyn...
We prove an analogue of the Poincaré-Birkhoff-Witt theorem and of the Cartier-Milnor-Moore theorem for non-cocommutative Hopf algebras. The primitive part of a cofree Hopf algebra is a B∞-algebra. We construct a universal enveloping functor U2 from B∞-algebras to 2-associative algebras, i.e. algebras equipped with two associative operations. We show that any cofree Hopf algebra H is of the form...
In quantum groups coproducts of Lie-algebras are twisted in terms of generators of the corresponding universal enveloping algebra. If representations are considered, twists also serve as starproducts that accordingly quantize representation spaces. In physics, requirements turn out to be the other way around. Physics comes up with noncommutative spaces in terms of starproducts that miss a suiti...
A general lattice theoretic construction of Reading constructs Hopf subalgebras of the Malvenuto-Reutenauer Hopf algebra (MR) of permutations. The products and coproducts of these Hopf subalgebras are defined extrinsically in terms of the embedding in MR. The goal of this paper is to find an intrinsic combinatorial description of a particular one of these Hopf subalgebras. This Hopf algebra has...
Let H be a finite-dimensional quasi-Hopf algebra. We show for each quotient quasibialgebra Q of H that Q is a quasi-Hopf algebra whose dimension divides the dimension of H.
We discuss a method to construct a De Rham complex (diierential algebra) of Poincar e-Birkhoo-Witt-type on the universal enveloping algebra of a Lie algebra g. We determine the cases in which this gives rise to a diierential Hopf algebra that naturally extends the Hopf algebra structure of U(g). The construction of such diierential structures is interpreted in terms of colour Lie superalgebras.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید