نتایج جستجو برای: hyperspectral image processing

تعداد نتایج: 810033  

Journal: :Journal of biomedical optics 2012
Hamed Akbari Luma V Halig David M Schuster Adeboye Osunkoya Viraj Master Peter T Nieh Georgia Z Chen Baowei Fei

Hyperspectral imaging (HSI) is an emerging modality for various medical applications. Its spectroscopic data might be able to be used to noninvasively detect cancer. Quantitative analysis is often necessary in order to differentiate healthy from diseased tissue. We propose the use of an advanced image processing and classification method in order to analyze hyperspectral image data for prostate...

Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...

2015
C. Lanaras

In this work, we jointly process high spectral and high geometric resolution images and exploit their synergies to (a) generate a fused image of high spectral and geometric resolution; and (b) improve (linear) spectral unmixing of hyperspectral endmembers at subpixel level w.r.t. the pixel size of the hyperspectral image. We assume that the two images are radiometrically corrected and geometric...

2010
Chein-I Chang Bharath Ramakrishna Jing Wang Antonio Plaza

Hyperspectral image compression has become increasingly important in data exploitation because of enormous data volumes and high redundancy provided by hundreds of contiguous spectral channels. Since a hyperspectral image can be viewed as a 3-dimensional (3D) image cube, many efforts have been devoted to extending 2D image compression techniques to perform 3D image compression on hyperspectral ...

2008
Ngai-Man Cheung Antonio Ortega

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 Hyperspectral Imagery Compression: State of the Art. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 Outline of This Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

Journal: :CoRR 2014
Zohaib Khan

Hyperspectral imaging, also known as imaging spectroscopy, captures a data cube of a scene in two spatial and one spectral dimension. Hyperspectral image analysis refers to the operations which lead to quantitative and qualitative characterization of a hyperspectral image. This thesis contributes to hyperspectral imaging and analysis methods at multiple levels. In a tunable filter based hypersp...

2000
P. L. Aguilar A. Plaza P. Martínez R. M. Pérez

Systolic arrays can be used in many different applications in order to improve performance. In particular, digital image processing algorithms are suitable to be implemented by systolic structures, since basic image manipulation operations are usually repetitive and can be mapped into a rectangular systolic structure. In this chapter we discuss the application of systolic arrays to speed up the...

2010
Miguel Angel Veganzones Carmen Hernández

In remote sensing hyperspectral image processing, identifying the constituent spectra (endmembers) of the materials in the image is a key procedure for further analysis. The contrast between Endmember Inductions Algorithms (EIAs) is a delicate issue, because there is a shortage of validation images with accurate ground truth information, and the induced endmembers may not correspond to any know...

2015
Saurabh Prasad Minshan Cui Demetrio Labate Yuhang Zhang

Hyperspectral imagery has emerged as a popular sensing modality for a variety of applications, and sparsity based methods were shown to be very effective to deal with challenges coming from high dimensionality in most hyperspectral classification problems. In this work, we challenge the conventional approach to hyperspectral classification, that typically builds sparsity-based classifiers direc...

Journal: :Environmental monitoring and assessment 2003
David J William Nancy B Rybicki Alfonso V Lombana Tim M O'Brien Richard B Gomez

The use of airborne hyperspectral remote sensing imagery for automated mapping of submerged aquatic vegetation (SAV) in the tidal Potomac River was investigated for near to real-time resource assessment and monitoring. Airborne hyperspectral imagery and field spectrometer measurements were obtained in October of 2000. A spectral library database containing selected ground-based and airborne sen...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید