نتایج جستجو برای: laplacian eigenvalues of graph

تعداد نتایج: 21177398  

2015
Jia-Bao Liu Xiang-Feng Pan

The incidence energy I E (G) of a graph G, defined as the sum of the singular values of the incidence matrix of a graph G, is a much studied quantity with well known applications in chemical physics. The Laplacian-energy-like invariant of G is defined as the sum of square roots of the Laplacian eigenvalues. In this paper, we obtain the closed-form formulae expressing the incidence energy and th...

Journal: :CoRR 2018
Naoki Saito

When attempting to develop wavelet transforms for graphs and networks, some researchers have used graph Laplacian eigenvalues and eigenvectors in place of the frequencies and complex exponentials in the Fourier theory for regular lattices in the Euclidean domains. This viewpoint, however, has a fundamental flaw: on a general graph, the Laplacian eigenvalues cannot be interpreted as the frequenc...

1999
F.R.K. Chung Kevin Oden KEVIN ODEN

We consider a weighted Cheeger’s constant for a graph and we examine the gap between the first two eigenvalues of Laplacian. We establish several isoperimetric inequalities concerning the unweighted Cheeger’s constant, weighted Cheeger’s constants and eigenvalues for Neumann and Dirichlet conditions .

Journal: :SIAM J. Discrete Math. 1994
Fan Chung Graham Vance Faber Thomas A. Manteuffel

The authors give a new upper bound for the diameter D(G) of a graph G in terms of the eigenvalues of the Laplacian of G. The bound is

The k-th semi total point graph of a graph G, , ‎is a graph‎ obtained from G by adding k vertices corresponding to each edge and‎ connecting them to the endpoints of edge considered‎. ‎In this paper‎, a formula for Laplacian polynomial of in terms of‎ characteristic and Laplacian polynomials of G is computed‎, ‎where is a connected regular graph‎.The Kirchhoff index of is also computed‎.

2016
Fernando Tura

The Laplacian and normalized Laplacian energy of G are given by expressions EL(G) = ∑n i=1 |μi − d|, EL(G) = ∑n i=1 |λi − 1|, respectively, where μi and λi are the eigenvalues of Laplacian matrix L and normalized Laplacian matrix L of G. An interesting problem in spectral graph theory is to find graphs {L,L}−noncospectral with the same E{L,L}(G). In this paper, we present graphs of order n, whi...

Journal: :J. Comb. Theory, Ser. B 2007
Mei Lu Huiqing Liu Feng Tian

In this paper, we present lower and upper bounds for the independence number α(G) and the clique number ω(G) involving the Laplacian eigenvalues of the graph G. © 2007 Elsevier Inc. All rights reserved.

Journal: :Electr. J. Comb. 2010
Saieed Akbari Ebrahim Ghorbani Jacobus H. Koolen Mohammad Reza Oboudi

Let G be a graph of order n with signless Laplacian eigenvalues q1, . . . , qn and Laplacian eigenvalues μ1, . . . , μn. It is proved that for any real number α with 0 < α 6 1 or 2 6 α < 3, the inequality qα 1 + · · · + qα n > μ1 + · · · + μn holds, and for any real number β with 1 < β < 2, the inequality q 1 + · · ·+ q n 6 μβ1 + · · ·+ μ β n holds. In both inequalities, the equality is attaine...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید