نتایج جستجو برای: maximal independent dominating
تعداد نتایج: 538396 فیلتر نتایج به سال:
Let G = (V,E) be a graph and let S & V. The set S is a dominating set of G is every vertex of V-S is adjacent to a vertex of S. A vertex v of G is called S-perfect if \N[t~]nsi = 1 where N[v] denotes the closed neighborhood of v. The set S is defined to be a perfect neighborhood set of G if every vertex of G is S-perfect or adjacent with an S-perfect vertex. We prove that for all graphs G, O(G)...
For each vertex v in a graph G, let there be associated a subgraph Hv of G. The vertex v is said to dominate Hv as well as dominate each vertex and edge of Hv. A set S of vertices of G is called a full dominating set if every vertex of G is dominated by some vertex of S, as is every edge of G. The minimum cardinality of a full dominating set of G is its full domination number γFH(G). A full dom...
A subset S of vertices in a graph G is a global total dominating set, or just GTDS, if S is a total dominating set of both G and G. The global total domination number γgt(G) of G is the minimum cardinality of a GTDS of G. We present bounds for the global total domination number in graphs.
R. Klein Levinski College Tel A vi v, Israel An m-<1egel1er'a J. Schonheim School of Mathematical Sciences Sackler Faculty of Exact Sciences Tel Aviv Israel every subgraph of which has minimal at most m. An (mI, m2, ... , the set of which can be partitioned into s sets generating rpc,,,prtlvplv We conjecture that such a graph is )J colorable. Partial results is settled. ~VU"Uv',"". but not e...
This Teaching Case has been developed to assist students in introductory first year MIS courses to develop an understanding of business context, while building practical expertise in IS modeling techniques and problem solving. The case has been formulated around a small financial planning practice, in order to work in a learning environment where students may not have had any (or limited) expos...
Let X1, X2, . . . , Xn be independent random variables and Sk = Pk i=1 Xi. We show that for any constants ak, P( max 1≤k≤n ||Sk| − ak| > 11t) ≤ 30 max 1≤k≤n P(||Sk| − ak| > t). We also discuss similar inequalities for sums of Hilbert and Banach space valued random vectors.
For a graph G = (V,E), a set S ⊆ V is a restrained dominating set if every vertex not in S is adjacent to a vertex in S as well as another vertex in V − S. The restrained domination number of G, denoted by γr(G), is the smallest cardinality of a restrained dominating set of G. In this paper we find all graphs G satisfying γr(G) = n− 3, where n is the order of G.
A set S of vertices of a graph G is a total dominating set if every vertex of V (G) is adjacent to some vertex in S. We provide three equivalent conditions for a tree to have a unique minimum total dominating set and give a constructive characterization of such trees.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید