نتایج جستجو برای: microbial electrolysis cell

تعداد نتایج: 1781717  

Journal: :Water research 2014
Roland D Cusick Mark L Ullery Brian A Dempsey Bruce E Logan

Microbial electrolysis cells (MECs) can be used to simultaneously convert wastewater organics to hydrogen and precipitate struvite, but scale formation at the cathode surface can block catalytic active sites and limit extended operation. To promote bulk phase struvite precipitation and minimize cathode scaling, a two-chamber MEC was designed with a fluidized bed to produce suspended particles a...

2013
Ivan Ivanov Lijiao Ren Michael Siegert Bruce E. Logan

Microbial electrolysis cells (MECs) are potential candidates for sustainable wastewater treatment as they allow for recovery of the energy input by producing valuable chemicals such as hydrogen gas. Evaluating the effectiveness of MEC treatment for different wastewaters requires new approaches to quantify performance, and the establishment of specific procedures and parameters to characterize t...

Journal: :Bioresource technology 2016
Mohan Qin Hannah Molitor Brian Brazil John T Novak Zhen He

A microbial electrolysis cell (MEC)-forward osmosis (FO) system was previously reported for recovering ammonium and water from synthetic solutions, and here it has been advanced with treating landfill leachate. In the MEC, 65.7±9.1% of ammonium could be recovered in the presence of cathode aeration. Without aeration, the MEC could remove 54.1±10.9% of ammonium from the leachate, but little ammo...

2017
Xiaoli Ma Zhifeng Li Aijuan Zhou Xiuping Yue

In comparison to the transportation and storage of hydrogen, methane has advantages in the practical application, while the emerging product termed as 'biohythane' could be an alternative to pure hydrogen or methane in a new form of energy recovery from microbial electrolysis cell (MEC). However, the cathodic catalyst even for biohythane still bothers the performance and cost of total MEC. Here...

Journal: :Bioresource technology 2012
Roland D Cusick Bruce E Logan

An energy efficient method of concurrent hydrogen gas and struvite (MgNH(4)PO(4)·6H(2)O) production was investigated based on bioelectrochemically driven struvite crystallization at the cathode of a single chamber microbial electrolysis struvite-precipitation cell (MESC). The MESC cathodes were either stainless steel 304 mesh or flat plates. Phosphate removal ranged from 20% to 40%, with higher...

2014
Jia Liu Fang Zhang Weihua He Wulin Yang Yujie Feng Bruce E. Logan

A microbial fluidized electrode electrolysis cell (MFEEC) was used to enhance hydrogen gas production from dissolved organic matter. Flowable granular activated carbon (GAC) particles were used to provide additional surface area for growth of exoelectrogenic bacteria. The use of this exoelectrogenic biofilm on the GAC particles with fluidization produced higher current densities and hydrogen ga...

2014
Xiuping Zhu Marta C. Hatzell Bruce E. Logan

Natural mineral carbonation can be accelerated using acid and alkali solutions to enhance atmospheric CO2 sequestration, but the production of these solutions needs to be carbon-neutral. A microbial reverse-electrodialysis electrolysis and chemical-production cell (MRECC) was developed to produce these solutions and H2 gas using only renewable energy sources (organic matter and salinity gradien...

2017
Pengyi Yuan Younggy Kim

BACKGROUND Microbial electrolysis cells (MECs) use bioelectrochemical reactions to remove organic contaminants at the bioanode and produce hydrogen gas at the cathode. High local pH conditions near the cathode can also be utilized to produce struvite from nutrient-rich wastewater. This beneficial aspect was investigated using lab-scale MECs fed with dewatering centrate collected at a local wast...

1997
J. Dash R. Kopecek

Presented here are results of research performed at Portland State University during the period 1994 to 1996. Excess heat was produced at the rate of about 1.2 watts during electrolysis of heavy water with a titanium cathode weighing 0.0625g. Analysis of the electrodes before and after electrolysis with a scanning electron microscopy (SEM) and an energy dispersive spectrometer (EDS) revealed th...

2016
Jhuma Sadhukhan Jon Lloyd Keith Scott Giuliano C Premier Eileen Yu Tom Curtis Ian Head

Despite some success with microbial fuel cells and microbial electrolysis cells in recovering resources from wastes, challenges with their scale and yield need to be resolved. Waste streams from biorefineries e.g. bioethanol and biodiesel plants and wastewaters are plausible substrates for microbial electrosynthesis (MES). MES integration can help biorefineries achieving the full polygeneration...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید