نتایج جستجو برای: mlp nn
تعداد نتایج: 16090 فیلتر نتایج به سال:
In our previous work we proposed a Multilayer Perceptron Neural Networks (MLP NN) consisting of fuzzy flipflops (F3) based on various operations. We showed that such kind of fuzzy-neural network had good learning properties. In this paper we propose an evolutionary approach for optimizing fuzzy flip-flop networks (FNN). Various popular fuzzy operation and three different fuzzy flip-flop types w...
In this article, a novel approach using ensemble of semi-supervised classifiers is proposed for change detection in remotely sensed images. Unlike the other traditional methodologies for detection of changes in land-cover, the present work uses a multiple classifier system in semi-supervised (leaning) framework instead of using a single weak classifier. Iterative learning of base classifiers is...
Software defect prediction is crucial used for detecting possible defects in software before they manifest. While machine learning models have become more prevalent prediction, their effectiveness may vary based on the dataset and hyperparameters of model. Difficulties arise determining most suitable model, as well identifying prominent features that serve input to classifier. This research aim...
The speed of ultrasonic motor of piezo-electric type is usually measured using mechanical sensors such as pulse encoders. However, these sensors are costly and bulky. In this paper, a numerical speed estimation approach of a piezo-electric motor (PEM) is implemented using multilayer perception neural network (MLP-NN). The proposed model evaluates rotational speed and load torque based on the am...
A resource limited immune approach (RLIA) was developed to evolve architecture and initial connection weights of multilayer neural networks. Then, with Back-Propagation (BP) algorithm, the appropriate connection weights can be found. The RLIA-BP classifier, which is derived from hybrid algorithm mentioned above, is demonstrated on SPOT multi-spectral image data, vowel data and Iris data effecti...
This paper presents a method for optimizing the parameters of Multilayer Perceptron Neural Networks (MLP NN) consisting of fuzzy flip-flops (F3) based on various operations using Bacterial Memetic Algorithm with the Modified Operator Execution Order (BMAM). In early work, the authors proposed the gradient based Levenberg-Marquardt (LM) algorithm for variable optimization. The BMAM local and glo...
Handwritten signatures are the most natural way of authenticating a person’s identity. An offline signature verification system generally consists of four components: data acquisition, preprocessing, feature extraction, recognition and verification. This paper presents a method for verifying handwritten signature by using NN architecture. In proposed methods the multi-layer perceptron (MLP), mo...
In this paper, performance of three classifiers for classification of five mental tasks were investigated. Wavelet Packet Transform (WPT) was used for feature extraction of the relevant frequency bands from raw Electroencephalograph (EEG) signal. The three classifiers namely used were Multilayer Back propagation Neural Network, Support Vector Machine and Radial Basis Function Neural Network. In...
The performance of Neural Networks (NN) depends on network structure, activation function and suitable weight values. For finding optimal weight values, freshly, computer scientists show the interest in the study of social insect’s behavior learning algorithms. Chief among these are, Ant Colony Optimzation (ACO), Artificial Bee Colony (ABC) algorithm, Hybrid Ant Bee Colony (HABC) algorithm and ...
Although many analytical works have been done to investigate the change of prediction error of a trained NN if its weights are injected by noise, seldom of them has truly investigated on the dynamical properties (such as objective functions and convergence behavior) of injecting weight noise during training. In this paper, four different online weight noise injection training algorithms for mul...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید