نتایج جستجو برای: multi objectiveparticle swarm

تعداد نتایج: 485020  

2013
Shi Cheng Yuhui Shi Quande Qin Ruibin Bai

This paper analyses the difficulty of big data analytics problems and the potential of swarm intelligence solving big data analytics problems. Nowadays, the big data analytics has attracted more and more attentions, which is required to manage immense amounts of data quickly. However, current researches mainly focus on the amount of data. In this paper, the other three properties of big data an...

2013
Essam Al Daoud

Intrusion detection is a mechanism used to protect a system and analyse and predict the behaviours of system users. An ideal intrusion detection system is hard to achieve due to nonlinearity, and irrelevant or redundant features. This study introduces a new anomaly-based intrusion detection model. The suggested model is based on particle swarm optimisation and nonlinear, multi-class and multi-k...

2011
Jorge Sebastian Hernández-Domínguez Gregorio Toscano Pulido Carlos A. Coello Coello

Particle swarm optimization (PSO) and differential evolution (DE) are meta-heuristics which have been found to be very successful in a wide variety of optimization tasks. The high convergence rate of PSO and the exploratory capabilities of DE make them highly viable candidates to be used for solving multi-objective optimization problems (MOPs). In previous studies that we have undertaken [2], w...

Journal: :Entropy 2013
Eduardo José Solteiro Pires José António Tenreiro Machado Paulo B. de Moura Oliveira

Multi-objective particle swarm optimization (MOPSO) is a search algorithm based on social behavior. Most of the existing multi-objective particle swarm optimization schemes are based on Pareto optimality and aim to obtain a representative non-dominated Pareto front for a given problem. Several approaches have been proposed to study the convergence and performance of the algorithm, particularly ...

Journal: :Journal of Intelligent and Fuzzy Systems 2014
Walid Elloumi Nesrine Baklouti Ajith Abraham Adel M. Alimi

In this paper, we illustrate a novel optimization approach based on Multi-objective Particle Swarm Optimization (MOPSO) and Fuzzy Ant Colony Optimization (FACO). The basic idea is to combine these two techniques using the best particle of the Fuzzy Ant algorithm and integrate it as the best local Particle Swarm Optimization (PSO), to formulate a new approach called hybrid MOPSO with FACO (H-MOP...

2012
Rajendrasingh Annauth

Orthogonal Frequency Division Multiplexing (OFDM) has the inherent properties of being robust to interference and frequency selective fading and is de facto the adopted multiplexing techniques for the 4 th generation wireless network systems. In wireless system, resources such as bandwidth and power are limited, intelligent allocation of these resources to users are crucial for delivering the b...

2005
Leticia Cagnina Susana Esquivel

This paper proposes a hybrid particle swarm approach called Simple Multi-Objective Particle Swarm Optimizer (SMOPSO) which incorporates Pareto dominance, an elitist policy, and two techniques to maintain diversity: a mutation operator and a grid which is used as a geographical location over objective function space. In order to validate our approach we use three well-known test functions propos...

2016
Yiqiong Yuan Jun Sun Dongmei Zhou Jianan Sun

In this paper, we presented a Multi-Objective Random Drift Particle Swarm Optimization algorithm (MORDPSO-CD) based on RDPSO and crowding distance sorting to improve the convergence and distribution with less computation cost. MORDPSO-CD makes the most of RDPSO to approach the true Pareto optimal solutions fast. We adopt the crowding distance sorting technique to update and maintain the archive...

Journal: :J. Intelligent Manufacturing 2012
Mehmet Emin Aydin

Coordination of multi agent systems remains as a problem since there is no prominent method to completely solve this problem. Metaheuristic agents are specific implementations of multi-agent systems, which imposes working together to solve optimisation problems with metaheuristic algorithms. The idea borrowed from swarm intelligence seems working much better than those implementations suggested...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید