An elegant and strong theory on noncommutative Noetherian rings has been developed in several groundbreaking works over the second half of the 20th century following the pioneering research of Alfred Goldie in the 1960s. The theory is still an active research area in Algebra and features many important classes of rings such as matrix rings, polynomial rings, differential operator rings, group r...
We show the existence of a first order theory Cmd,e whose Noetherian models are precisely the local Cohen-Macaulay rings of dimension d and multiplicity e. The completion of a model of Cmd,e is again a model and is moreover Noetherian. If R is an equicharacteristic local Gorenstein ring of dimension d and multiplicity e with algebraically closed residue field and if the Artin Approximation Prop...
Journal:
:Journal of Algebra and Its Applications2021
It is proved that a ring A right or left Noetherian, distributive, centrally essential if and only [Formula: see text], where each of the rings text] either commutative Dedekind domain Artinian, uniserial ring.