نتایج جستجو برای: operator spaces
تعداد نتایج: 217957 فیلتر نتایج به سال:
Hilbert C∗-modules are useful tools in AW ∗-algebra theory, theory of operator algbras, operator K-theory, group representation theory and theory of operator spaces. The theory of Hilbert C∗-modules is very interesting on its own. In this paper we give fundamentals of the theory of Hilbert C∗-modules and examine some ways in which Hilbert C∗-modules differ from Hilbert spaces.
We prove a complex and a real interpolation theorems on Besov spaces and Triebel-Lizorkin spaces associated with a selfadjoint operator L, without assuming the gradient estimate for its spectral kernel. The result applies to the cases where L is a uniformly elliptic operator or a Schrödinger operator with electromagnetic potential.
In the category of operator spaces, that is, subspaces of the bounded linear operators B(H) on a complex Hilbert space H together with the induced matricial operator norm structure, objects are equivalent if they are completely isometric, i.e. if there is a linear isomorphism between the spaces which preserves this matricial norm structure. Since operator algebras, that is, subalgebras of B(H),...
The generalized Roper-Suffridge extension operator in Banach spaces is introduced. We prove that this operator preserves the starlikeness on some domains in Banach spaces and does not preserve convexity in some cases. Furthermore, the growth theorem and covering theorem of the corresponding mappings are given. Some results of Roper and Suffridge and Graham et al. in Cn are extended to Banach sp...
G-frames are natural generalizations of frames which provide more choices on analyzing functions from frame expansion coefficients. First, they were defined in Hilbert spaces and then generalized on C*-Hilbert modules. In this paper, we first generalize the concept of g-frames to Hilbert modules over pro-C*-algebras. Then, we introduce the g-frame operators in such spaces and show that they sha...
Abstract. Here a new condition for the geometry of Banach spaces is introduced and the operator–valued Fourier multiplier theorems in weighted Besov spaces are obtained. Particularly, connections between the geometry of Banach spaces and Hörmander-Mikhlin conditions are established. As an application of main results the regularity properties of degenerate elliptic differential operator equation...
We give a natural definition of the Morrey spaces for Radon measures which may be non-doubling but satisfy the growth condition. In these spaces we investigate the behavior of the maximal operator, the fractional integral operator, the singular integral operator and their vector-valued extensions.
We construct some separable infinite dimensional homogeneous Hilbertian operator spaces H ∞ and H m,L ∞ , which generalize the row and column spaces R and C (the case m = 0). We show that separable infinitedimensional Hilbertian JC∗-triples are completely isometric to an element of the set of (infinite) intersections of these spaces . This set includes the operator spaces R, C, R ∩ C, and the s...
Let H be a Schrödinger operator on R. Under a polynomial decay condition for the kernel of its spectral operator, we show that the Besov spaces and Triebel-Lizorkin spaces associated with H are well defined. We further give a Littlewood-Paley characterization of Lp spaces as well as Sobolev spaces in terms of dyadic functions of H . This generalizes and strengthens the previous result when the ...
In this paper we introduce continuous $g$-Bessel multipliers in Hilbert spaces and investigate some of their properties. We provide some conditions under which a continuous $g$-Bessel multiplier is a compact operator. Also, we show the continuous dependency of continuous $g$-Bessel multipliers on their parameters.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید