A space $X$ is said to have the set star Hurewicz property if for each nonempty subset $A$ of and sequence $(\mathcal{U}_n: n\in \mathbb{N})$ collections sets open in such that $n\in \mathbb N$, $\overline{A} \subset \cup \mathcal{U}_n$, there a $(\mathcal{V}_n: n \in $n \mathbb{N}$, $\mathcal{V}_n$ finite $\mathcal{U}_n$ $x A$, {\rm St}(\cup\mathcal{V}_n, \mathcal{U}_n)$ all but finitely many ...