نتایج جستجو برای: pc71bm
تعداد نتایج: 134 فیلتر نتایج به سال:
Landmark power conversion efficiency (PCE) over 10% has been accomplished in the past year for single-junction organic solar cell (OSCs), suggesting a promising potential application of this technology. However, most of the high efficient OSCs are based on inverted configuration. Regular structure OSCs with both high efficiency and good stability are still rarely reported to date. In this work,...
A series of acceptor1–donor–acceptor2 (A1–D–A2)-type copolymers was designed and synthesized using thiophene as an electronrich unit and benzothiadiazole (BT) and benzotriazole (BTz) as electron-deficient moieties. A weaker acceptor, BTz, was incorporated as a solubilizing moiety with three tetradecyl (or tetradecyloxy) side chains, and a stronger acceptor, BT, was substituted with different nu...
The vertical composition profile of active layer has a major effect on the performance of organic photovoltaic devices (OPVs). While stepwise deposition of different materials is a conceptually straightforward method for controlled preparation of multi-component active layers, it is practically challenging for solution processes because of dissolution of the lower layer. Herein, we overcome thi...
In an effort to design efficient low-cost polymers for use in organic photovoltaic cells the easily prepared donor– acceptor–donor triad of a either cis-benzobisoxazole, transbenzobisoxazole or trans-benzobisthiazole flanked by two thiophene rings was combined with the electron-rich 4,8bis(5-(2-ethylhexyl)-thien-2-yl)-benzo[1,2-b:4,5-b0]dithiophene. The electrochemical, optical, morphological, ...
Two new C60-based n-type materials, EGMC-OH and EGMC-COOH, functionalized with hydrophilic triethylene glycol groups (TEGs), have been synthesized and employed in conventional polymer solar cells. With the assistance of the TEG-based surfactant, EGMC-OH and EGMC-COOH can be dissolved in highly polar solvents to implement the polar/nonpolar orthogonal solvent strategy, forming an electron modifi...
Three conjugated polymers comprised of dioctyldithieno-[2,3-b:2’,3’-d]silole and a donor-acceptor-donor triad of either cis-benzbisoxazole, trans-benzobisoxazole or transbenzobisthiazole were synthesized via the Stille cross-coupling reaction. The impact of varying the heteroatoms and/or the location within the benzobisazole moiety on the optical and electronic properties of the resulting polym...
BACKGROUND Novel six organic donor-π-acceptor molecules (D-π-A) used for Bulk Heterojunction organic solar cells (BHJ), based on thienopyrazine were studied by density functional theory (DFT) and time-dependent DFT (TD-DFT) approaches, to shed light on how the π-conjugation order influence the performance of the solar cells. The electron acceptor group was 2-cyanoacrylic for all compounds, wher...
Two different thienopyrroledione (TPD)-based small molecules (SMs) with different alkyl substitution positions were synthesized, and their photovoltaic properties are measured and compared to examine the effect of the alkyl substitution position on their optical, electrochemical, and photovoltaic properties. The use of TPD as an electron-accepting unit in conjugated SMs effectively lowers the h...
A low-cost (<$1 per g), high-yield (>90%), alcohol soluble surfactant-encapsulated polyoxometalate complex [(C8H17)4N]4[SiW12O40] has been synthesized and utilized as a cathode interlayer (CIL) in polymer solar cells (PSCs). A power conversion efficiency of 10.1% can be obtained for PSCs based on PTB7-Th (poly[[2,60-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]-dithiophene][3-fluoro-2[(2-ethylh...
With the goal of investigating and enhancing anode performance in bulk-heterojunction (BHJ) organic photovoltaic (OPV) cells, the glass/tin-doped indium oxide (ITO) anodes are modified with a series of robust silane-tethered bis(fluoroaryl)amines to form self-assembled interfacial layers (IFLs). The modified ITO anodes are characterized by contact angle measurements, X-ray reflectivity, ultravi...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید