Let $G=(V,E)$ be a finite and simple graph of order $n$ maximumdegree $\Delta$. A signed strong total Roman dominating function ona $G$ is $f:V(G)\rightarrow\{-1, 1,2,\ldots, \lceil\frac{\Delta}{2}\rceil+1\}$ satisfying the condition that (i) forevery vertex $v$ $G$, $f(N(v))=\sum_{u\in N(v)}f(u)\geq 1$, where$N(v)$ open neighborhood (ii) every forwhich $f(v)=-1$ adjacent to at least one vertex...