نتایج جستجو برای: signed roman k dominating function

تعداد نتایج: 1571544  

Journal: :Discrete Applied Mathematics 2009
Dirk Meierling Lutz Volkmann Stephan Zitzen

Let G be a finite and simple graph with vertex set V (G), and let f : V (G) → {−1, 1} be a two-valued function. If ∑ x∈N[v] f (x) ≥ 1 for each v ∈ V (G), where N[v] is the closed neighborhood of v, then f is a signed dominating function on G. A set {f1, f2, . . . , fd} of signed dominating functions on Gwith the property that ∑d i=1 fi(x) ≤ 1 for each x ∈ V (G), is called a signed dominating fa...

Journal: :Australasian J. Combinatorics 2008
Hosein Karami Seyed Mahmoud Sheikholeslami Abdollah Khodkar

The open neighborhood NG(e) of an edge e in a graph G is the set consisting of all edges having a common end-vertex with e and its closed neighborhood is NG[e] = NG(e) ∪ {e}. Let f be a function on E(G), the edge set of G, into the set {−1, 1}. If ∑x∈NG[e] f(x) ≥ 1 for at least a half of the edges e ∈ E(G), then f is called a signed edge majority dominating function of G. The minimum of the val...

Journal: :Discussiones Mathematicae Graph Theory 2013
Mustapha Chellali Nader Jafari Rad

A Roman dominating function (RDF) on a graphG = (V,E) is a function f : V −→ {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of an RDF is the value f(V (G)) = ∑ u∈V (G) f(u). An RDF f in a graph G is independent if no two vertices assigned positive values are adjacent. The Roman domination number γR(G)...

Journal: :Australasian J. Combinatorics 2017
Alawi Alhashim Wyatt J. Desormeaux Teresa W. Haynes

The complementary prism GG of a graph G is formed from the disjoint union of G and its complement G by adding the edges of a perfect matching between the corresponding vertices of G and G. A Roman dominating function on a graph G = (V,E) is a labeling f : V (G) → {0, 1, 2} such that every vertex with label 0 is adjacent to a vertex with label 2. The Roman domination number γR(G) ofG is the mini...

Journal: :Discussiones Mathematicae Graph Theory 2015
Abdollah Khodkar Babak Samadi Lutz Volkmann

Let G be a graph. A function f : V (G) → {−1, 1} is a signed kindependence function if the sum of its function values over any closed neighborhood is at most k − 1, where k ≥ 2. The signed k-independence number of G is the maximum weight of a signed k-independence function of G. Similarly, the signed total k-independence number of G is the maximum weight of a signed total k-independence functio...

2011
S. M. Sheikholeslami L. Volkmann

LetD = (V,A) be a finite and simple digraph. A Roman dominating function (RDF) on a digraph D is a labeling f : V (D) → {0, 1, 2} such that every vertex with label 0 has a in-neighbor with label 2. The weight of an RDF f is the value ω(f) = ∑ v∈V f(v). The Roman domination number of a digraph D, denoted by γR(D), equals the minimum weight of an RDF on D. In this paper we present some sharp boun...

Journal: :European Journal of Pure and Applied Mathematics 2023

Let k ∈ Z +. A − distance Roman dominating function (kDRDF) on G = (V, E) is a f : V → {0, 1, 2} such that for every vertex v with f(v) 0, there u f(u) 2 d(u, v) ≤ k. The global (GkDRDF) if and only its complement G. weight of the value w(f) P x∈V f(x). minimum graph called domination number denoted as γ gR(G). gR(G) Note that, 1 usual γgR(G), is, γgR(G). authors initiated this study. In paper,...

A Roman dominating function (RDF) on a graph $G = (V, E)$ is a labeling $f : V rightarrow {0, 1, 2}$ suchthat every vertex with label $0$ has a neighbor with label $2$. The weight of $f$ is the value $f(V) = Sigma_{vin V} f(v)$The Roman domination number, $gamma_R(G)$, of $G$ is theminimum weight of an RDF on $G$.An RDF of minimum weight is called a $gamma_R$-function.A graph G is said to be $g...

2011
H. ARAM

For a positive integer k, a total {k}-dominating function of a graph G without isolated vertices is a function f from the vertex set V (G) to the set {0, 1, 2, . . . , k} such that for any vertex v ∈ V (G), the condition ∑ u∈N(v) f(u) ≥ k is fulfilled, where N(v) is the open neighborhood of v. The weight of a total {k}-dominating function f is the value ω(f) = ∑ v∈V f(v). The total {k}-dominati...

2006
Chuan-Min Lee Maw-Shang Chang

Let Y be a subset of real numbers. A Y dominating function of a graph G = (V, E) is a function f : V → Y such that u∈NG[v] f(u) ≥ 1 for all vertices v ∈ V , where NG[v] = {v} ∪ {u|(u, v) ∈ E}. Let f(S) = u∈S f(u) for any subset S of V and let f(V ) be the weight of f . The Y -domination problem is to find a Y -dominating function of minimum weight for a graph. In this paper, we study the variat...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید