نتایج جستجو برای: sparse structured principal component analysis

تعداد نتایج: 3455761  

Journal: :فیزیک زمین و فضا 0
مهدی صادقی دانشجوی کارشناسی ارشد ژئوفیزیک (لرزه شناسی)، دانشگاه صنعتی شاهرود، ایران امین روشندل کاهو استادیار، دانشکده معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود، ایران حمیدرضا سیاه کوهی استاد، گروه فیزیک زمین، موسسه ژئوفیزیک دانشگاه تهران، ایران علیرضا حیدریان دانشجوی دکتری ژئوفیزیک، موسسه ژئوفیزیک، دانشگاه تهران، ایران

spectral decomposition of time series has a significant role in seismic data processing and interpretation. since the earth acts as a low-pass filter, it changes frequency content of passing seismic waves. conventional representing methods of signals in time domain and frequency domain cannot show time and frequency information simultaneously. time-frequency transforms upgraded spectral decompo...

2007
Tapani Raiko Alexander Ilin Juha Karhunen

Principal component analysis (PCA) is a widely used technique for data analysis and dimensionality reduction. Eigenvalue decomposition is the standard algorithm for solving PCA, but a number of other algorithms have been proposed. For instance, the EM algorithm is much more efficient in case of high dimensionality and a small number of principal components. We study a case where the data are hi...

Journal: :CoRR 2016
Chelsea Weaver Naoki Saito

Sparse representation-based classification (SRC), proposed by Wright et al., seeks the sparsest decomposition of a test sample over the dictionary of training samples, with classification to the most-contributing class. Because it assumes test samples can be written as linear combinations of their same-class training samples, the success of SRC depends on the size and representativeness of the ...

2010
Kevin Sharp Magnus Rattray

We describe a novel inference algorithm for sparse Bayesian PCA with a zero-norm prior on the model parameters. Bayesian inference is very challenging in probabilistic models of this type. MCMC procedures are too slow to be practical in a very high-dimensional setting and standard mean-field variational Bayes algorithms are ineffective. We adopt a dense message passing algorithm similar to algo...

2006
Hector D. Flores Stephan Eidenbenz Rudolf H. Riedi Nicholas Hengartner

Data collected in realistic mobility traces for mobile ad hoc networks (MANETS) is intrinsically high dimensional. Principal Component Analysis (PCA) is a good tool for reducing the data dimemsion by extracting important features of the data. We propose a method for computing principal components using iterative regression for high dimensional matricies with missing values with an application t...

Journal: :Math. Program. 2012
Zhaosong Lu Yong Zhang

Principal component analysis (PCA) is a widely used technique for data analysis and dimension reduction with numerous applications in science and engineering. However, the standard PCA suffers from the fact that the principal components (PCs) are usually linear combinations of all the original variables, and it is thus often difficult to interpret the PCs. To alleviate this drawback, various sp...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید