نتایج جستجو برای: symplectic group
تعداد نتایج: 986470 فیلتر نتایج به سال:
We consider two types of graded algebras (with graded actions by the symplectic Lie algebra) that arise in the study of the mapping class group, and describe their symplectic invariants in terms of algebras on trivalent graphs.
The present paper discusses the problem of least-squares over the real symplectic group of matrices Sp(2n,R). The least-squares problem may be extended from flat spaces to curved spaces by the notion of geodesic distance. The resulting non-linear minimization problem on manifold may be tackled by means of a gradient-descent algorithm tailored to the geometry of the space at hand. In turn, gradi...
A positive path in the linear symplectic group Sp(2n) is a smooth path which is everywhere tangent to the positive cone. These paths are generated by negative definite (time-dependent) quadratic Hamiltonian functions on Euclidean space. A special case are autonomous positive paths, which are generated by time-independent Hamiltonians, and which all lie in the set U of diagonalizable matrices wi...
In this paper we introduce, and characterize, a class of graph parameters obtained from tensor invariants of the symplectic group. These parameters are similar to partition functions of vertex models, as introduced by de la Harpe and Jones, [P. de la Harpe, V.F.R. Jones, Graph invariants related to statistical mechanical models: examples and problems, Journal of Combinatorial Theory, Series B 5...
Symplectic torus bundles ξ : T 2 → E → B are classified by the second cohomology group of B with local coefficients H1(T ). For B a compact, orientable surface, the main theorem of this paper gives a necessary and sufficient condition on the cohomology class corresponding to ξ for E to admit a symplectic structure compatible with the symplectic bundle structure of ξ : namely, that it be a torsi...
We show how to construct a resolution of symplectic orbifolds obtained as quotients of presymplectic manifolds with a torus action. As a corollary, this allows us to desingularise generic symplectic quotients. Given a manifold with a Hamiltonian action of a compact Lie group, symplectic reduction at a coadjoint orbit which is transverse to the moment map produces a symplectic orbifold. If moreo...
For the cotangent bundle T Q of a smooth Riemannian manifold acted upon by the lift of a smooth and proper action by isometries of a Lie group, we characterize the symplectic normal space at any point. We show that this space splits as the direct sum of the cotangent bundle of a linear space and a symplectic linear space coming from reduction of a coadjoint orbit. This characterization of the s...
We study isomorphism classes of symplectic dual pairs P ← S → P , where P is an integrable Poisson manifold, S is symplectic, and the two maps are complete, surjective Poisson submersions with connected and simply-connected fibres. For fixed P , these Morita self-equivalences of P form a group Pic(P ) under a natural “tensor product” operation. Variants of this construction are also studied, fo...
Each symplectic group over the field of two elements has two exceptional doubly transitive actions on sets of quadratic forms on the defining symplectic vector space. This paper studies the associated 2-modular permutation modules. Filtrations of these modules are constructed which have subquotients which are modules for the symplectic group over an algebraically closed field of characteristic ...
In this paper we give some general results on the non-splitextension group $overline{G}_{n} = 2^{2n}{^{cdot}}Sp(2n,2), ngeq2.$ We then focus on the group $overline{G}_{4} =2^{8}{^{cdot}}Sp(8,2).$ We construct $overline{G}_{4}$ as apermutation group acting on 512 points. The conjugacy classes aredetermined using the coset analysis technique. Then we determine theinertia factor groups and Fischer...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید