نتایج جستجو برای: systems of integral equations
تعداد نتایج: 21304684 فیلتر نتایج به سال:
In this article, we discuss about solvability of infinite systems of singular integral equations with two variables in the Banach sequence space $C(I times I, c)$ by applying measure of noncompactness and Meir-Keeler condensing operators. By presenting an example, we have illustrated our results. For validity of the results we introduce a modified semi-analytic method in the case of tw...
in this article we decide to define a modified homotopy perturbation for solving non-linear integral equations. almost, all of the papers that was presented to solve non-linear problems by the homotopy method, they used from two non-linear and linear operators. but we convert a non-linear problem to two suitable non-linear operators also we use from appropriate bases functions such as legendre ...
in this paper, we prove the existence and uniqueness results to the random fractional functional differential equations under assumptions more general than the lipschitz type condition. moreover, the distance between exact solution and appropriate solution, and the existence extremal solution of the problem is also considered.
we develop and apply the product integration method to a large class of linear weakly singular volterra systems. we show that under certain sufficient conditions this method converges. numerical implementation of the method is illustrated by a benchmark problem originated from heat conduction.
we develop and apply the product integration method to a large class of linear weakly singular volterra systems. we show that under certain sufficient conditions this method converges. numerical implementation of the method is illustrated by a benchmark problem originated from heat conduction.
This paper gives an ecient numerical method for solving the nonlinear systemof Volterra-Fredholm integral equations. A Legendre-spectral method based onthe Legendre integration Gauss points and Lagrange interpolation is proposedto convert the nonlinear integral equations to a nonlinear system of equationswhere the solution leads to the values of unknown functions at collocationpoints.
The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید