نتایج جستجو برای: tensor analysis
تعداد نتایج: 2858433 فیلتر نتایج به سال:
Nonnegative tensor factorization has applications in statistics, computer vision, exploratory multiway data analysis and blind source separation. A symmetric nonnegative tensor, which has an exact symmetric nonnegative factorization, is called a completely positive tensor. This concept extends the concept of completely positive matrices. A classical result in the theory of completely positive m...
Traditional tensor decompositions such as the CANDECOMP / PARAFAC (CP) and Tucker decompositions yield higher-order principal components that have been used to understand tensor data in areas such as neuroimaging, microscopy, chemometrics, and remote sensing. Sparsity in high-dimensional matrix factorizations and principal components has been well-studied exhibiting many benefits; less attentio...
Estimation of local spatial structure has a long history and numerous analysis tools have been developed. A concept that is widely recognized as fundamental in the analysis is the structure tensor. However, precisely what it is taken to mean varies within the research community. We present a new method for structure tensor estimation which is a generalization of many of it’s predecessors. The m...
In the context of supervised tensor learning, preserving the structural information and exploiting the discriminative nonlinear relationships of tensor data are crucial for improving the performance of learning tasks. Based on tensor factorization theory and kernel methods, we propose a novel Kernelized Support Tensor Machine (KSTM) which integrates kernelized tensor factorization with maximum-...
Discriminative subspace analysis has been a popular approach to face recognition. Most of the previous work such as Eigen-faces (Turk & Pentlend, 1991), LDA (Belhumeur et al., 1997), Laplacian faces (He et al., 2005a), as well as a variety of tensor based subspace analysis methods (He et al., 2005b; Chen et al., 2005; Xu et al., 2006; Hua et al., 2007), can all be unified in the graph embedding...
Motivated by applications in neuroimaging analysis, we propose a new regression model, Sparse TensOr REsponse regression (STORE), with a tensor response and a vector predictor. STORE embeds two key sparse structures: element-wise sparsity and low-rankness. It can handle both a non-symmetric and a symmetric tensor response, and thus is applicable to both structural and functional neuroimaging da...
There has been substantial interest in the development of methods for processing diffusion tensor fields, taking into account the non-Euclidean nature of the tensor space. In this paper, we generalise Procrustes analysis to weighted Procrustes analysis for diffusion tensor smoothing, interpolation, regularisation and segmentation in which an arbitrary number of tensors can be processed efficien...
We analyze the statistical performance of a recently proposed convex tensor decomposition algorithm. Conventionally tensor decomposition has been formulated as non-convex optimization problems, which hindered the analysis of their performance. We show under some conditions that the mean squared error of the convex method scales linearly with the quantity we call the normalized rank of the true ...
Abstract: A dual mixed finite element method, for quasi–Newtonian fluid flow obeying the power law or the Carreau law, is constructed and analyzed in Farhloul–Zine [13]. This mixed formulation possesses good local (i.e., at element level) conservation properties (conservation of the momentum and the mass) as in the finite volume methods. In Farhloul–Zine [12], we developed an a posteriori error...
In this paper, we provide local and global convergence guarantees for recovering CP (Candecomp/Parafac) tensor decomposition. The main step of the proposed algorithm is a simple alternating rank-1 update which is the alternating version of the tensor power iteration adapted for asymmetric tensors. Local convergence guarantees are established for third order tensors of rank k in d dimensions, wh...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید