Journal:
:Journal of Mathematical Inequalities2021
In this short paper, we establish a reverse of the derived inequalities for sector matrices by Tan and Xie, with Kantorovich constant. Then, as application our main theorem, some determinant unitarily invariant norm are presented.
An important problem in quantum information theory is the mathematical characterization of the phenomenon of quantum catalysis: when can the surrounding entanglement be used to perform transformations of a jointly held quantum state under LOCC (local operations and classical communication) ? Mathematically, the question amounts to describe, for a fixed vector y, the set T (y) of vectors x such ...
An operator is uniform if its restriction to any infinite-dimensional invariant subspace is unitarily equivalent to itself. We show that a uniform operator having a proper infinite-dimensional invariant subspace resembles an analytic Toeplitz operator in the way that the weakly closed algebra generated by it and the identity operator is isomorphic to a subalgebra of the Calkin algebra; furtherm...
In 1957, Chandler Davis proved that unitarily invariant convex functions on the space of hermitian matrices are precisely those which are convex and symmetrically invariant on the set of diagonal matrices. We give a simple perturbation theoretic proof of this result. (Davis’ argument was also very short, though based on completely different ideas). Consider an orthogonally invariant function f ...
Optimization problems involving the eigenvalues of symmetric and nonsymmetric matrices present a fascinating mathematical challenge. Such problems arise often in theory and practice, particularly in engineering design, and are amenable to a rich blend of classical mathematical techniques and contemporary optimization theory. This essay presents a personal choice of some central mathematical ide...