نتایج جستجو برای: vertex irregular total labeling
تعداد نتایج: 918423 فیلتر نتایج به سال:
For each positive integer \(k\), a simple graph \(G\) of order \(p\) is said to be \(k\)-prime labeling if there exists an injective function \(f\) whose labels are from \(k\) \(k+p-1\) that induces \(f^{+}:E(G)\to N\) the edges defined by \(f^{+}(uv)=\gcd(f(u),f(v))\), \(\forall\) \(e=uv \in E(G)\) such every pair neighbouring vertices relatively prime. This type known as graph. In this paper,...
A graph $G$ is $k$-$weighted-list-antimagic$ if for any vertex weighting $\omega\colon V(G)\to\mathbb{R}$ and list assignment $L\colon E(G)\to2^{\mathbb{R}}$ with $|L(e)|\geq |E(G)|+k$ there exists an edge labeling $f$ such that $f(e)\in L(e)$ all $e\in E(G)$, labels of edges are pairwise distinct, the sum on incident to a plus weight distinct from at every other vertex. In this paper we prove ...
Refinement operators for triangular meshes as used in subdivision schemes or remeshing are discussed. A numbering scheme is presented, covering all refinement operators that (topologically) map vertices onto vertices. Using this characterization, some special properties of n-adic and √ 3-subdivision are easy to see.
The Graceful Tree Conjecture claims that every finite simple tree of order n can be vertex labeled with integers {1, 2, ...n} so that the absolute values of the differences of the vertex labels of the end-vertices of edges are all distinct. That is, a graceful labeling of a tree is a vertex labeling f , a bijection f : V (Tn) −→ {1, 2, ...n}, that induces an edge labeling g(uv) = |f(u)− f(v)| t...
An L(2, 1)-labeling (or distance two labeling) of a graph G is a function f from the vertex set V (G) to the set of all nonnegative integers such that |f(x) − f(y)| ≥ 2 if d(x, y) = 1 and |f(x) − f(y)| ≥ 1 if d(x, y) = 2. The L(2, 1)-labeling number λ(G) of G is the smallest number k such that G has an L(2, 1)-labeling with max{f(v) : v ∈ V (G)} = k. In this paper we completely determine the λ-...
In this paper we introduce a new type of graph labeling, the (a, d)vertex-antimagic total labeling, which is a generalization of several other types of labelings. A connected graph G(V, E) is said to be (a, d)-vertex-antimagic total if there exist positive integers a, d and a bijection λ : V ∪ E → {1, 2, . . . , |V | + |E|} such that the induced mapping gλ : V → W is also a bijection, where W =...
Let G = (V;E) be a graph. A total labeling ψ : V ⋃ E → {1, 2, ....k} is called totally irregular k-labeling of if every two distinct vertices u and v in (G) satisfy wt(u) ≠wt(v); edges u1u2 v1v2 E(G) wt(u1u2) ≠ wt(v1v2); where (u) + ∑uv∊E(G) ψ(uv) ψ(u1) ψ(u1u2) ψ(u2): The minimum k for which graph has the irregularity strength G, denoted by ts(G): In this paper, we determine exact value cubic g...
The study of valuations of graphs is a relatively young part of graph theory. In this article we survey what is known about certain graph valuations, that is, labeling methods: antimagic labelings, edge-magic total labelings and vertex-magic total labelings.
Let G be a graph with p vertices and q edges. A total neighborhood prime labeling of is in which the edges are assigned labels from 1 to + such that gcd each non degree vertex equal 1. admits called graph. In this paper, we examine trees as (n, k, m) double star trees, spiders, caterpillars firecrackers.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید