Let E be an ample rank r bundle on a smooth toric projective surface, S, whose topological Euler characteristic is e(S). In this article, we prove a number of surprisingly strong lower bounds for c1(E) and c2(E). First, we show Corollary (3.2), which says that, given S and E as above, if e(S) ≥ 5, then c1(E) ≥ r2e(S). Though simple, this is much stronger than the known lower bounds over not nec...