نتایج جستجو برای: aluthge transform self adjoint operators unitarily invariant norm
تعداد نتایج: 836649 فیلتر نتایج به سال:
We discuss the division method for subspectra which appears to be one of the key approaches in the study of spectral properties of self-adjoint differential vector-operators, that is operators generated as a direct sum of self-adjoint extensions on an Everitt-Markus-Zettl multi-interval system. In the current work we show how the division method may be applied to obtain the ordered spectral rep...
Following the results of cite{Med}, regarding the Aluthge transform of polynomial matrices, the symbolic computation of the Duggal transform of a polynomial matrix $A$ is developed in this paper, using the polar decomposition and the singular value decomposition of $A$. Thereat, the polynomial singular value decomposition method is utilized, which is an iterative algorithm with numerical charac...
This text is a survey of recent results obtained by the author and collaborators on different problems for non-self-adjoint operators. The topics are: Kramers-Fokker-Planck type operators, spectral asymptotics in two dimensions and Weyl asymptotics for the eigenvalues of non-self-adjoint operators with small random perturbations. In the introduction we also review the notion of pseudo-spectrum ...
We show that for any unitarily invariant norm k k on M n (the space of n-by-n complex matrices) where denotes the Hadamard (entrywise) product. These results are a consequence of an inequality for absolute norms on C n kx yk 2 kx xk ky yk for all x; y 2 C n : (2) We also characterize the norms on C n that satisfy (2), characterize the unitary similarity invariant norms on M n that satisfy (1), ...
we investigate a class of fourth-order differential operators with eigenparameter dependent boundary conditions and transmission conditions. a self-adjoint linear operator a is defined in a suitable hilbert space h such that the eigenvalues of such a problem coincide with those of a . we discuss asymptotic behavior of its eigenvalues and completeness of its eigenfunctions. finally, we obtain th...
We address the count of isolated and embedded eigenvalues in a generalized eigenvalue problem defined by two self-adjoint operators with a positive essential spectrum and a finite number of isolated eigenvalues. The generalized eigenvalue problem determines spectral stability of nonlinear waves in a Hamiltonian dynamical system. The theory is based on the Pontryagin’s Invariant Subspace theorem...
The unitarily invariant norms of matrices, or operators, are essentially the symmetric norms of their singular values. A subclass of these norms depending upon only a few largest of the singular values is considered, and the polars of these norms are characterized. The result is then used to obtain generalizations of some well-known inequalities. The implications for operators on infinite-dimen...
Abstract In this paper we are interested in the approximation of fractional powers self-adjoint positive operators. Starting from integral representation operators, apply trapezoidal rule combined with a double-exponential transform integrand function. work show how to improve existing error estimates for scalar case and also extend analysis We report some numerical experiments reliability obta...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید