Definition 1. An (archimedean) absolute value on a field k is a real valued function ‖ · ‖ : k → [0,∞) with the following three properties: (1) ‖x‖ = 0 if and only if x = 0. (2) ‖xy‖ = ‖x‖ · ‖y‖. (3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖. A nonarchimedean absolute value satisfies the extra condition that (3’) ‖x+ y‖ ≤ max{‖x‖, ‖y‖}. If k is a field, we denote Mk the set of absolute values on k. As an abuse of nota...