نتایج جستجو برای: carbon fixation

تعداد نتایج: 330138  

Journal: :Global change biology 2012
Toby R Marthews Yadvinder Malhi Cécile A J Girardin Javier E Silva Espejo Luiz E O C Aragão Daniel B Metcalfe Joshua M Rapp Lina M Mercado Rosie A Fisher David R Galbraith Joshua B Fisher Norma Salinas-Revilla Andrew D Friend Natalia Restrepo-Coupe Richard J Williams

A better understanding of the mechanisms controlling the magnitude and sign of carbon components in tropical forest ecosystems is important for reliable estimation of this important regional component of the global carbon cycle. We used the JULES vegetation model to simulate all components of the carbon balance at six sites along an Andes-Amazon transect across Peru and Brazil and compared the ...

Journal: :Cell 2007
F. Robert Tabita

In cyanobacteria, the RbcX protein enhances the production of Rubisco, the multisubunit enzyme that catalyzes the first step of carbon dioxide fixation in most autotrophic organisms. In this issue of Cell, Saschenbrecker et al. (2007) report that RbcX acts as a specific assembly chaperone that mobilizes the large subunits of Rubisco to a specific oligomeric core that can then combine with the s...

2018
Brandon A Rohnke Shailendra P Singh Bagmi Pattanaik Beronda L Montgomery

Carboxysomes are central to the carbon dioxide-concentrating mechanism (CCM) and carbon fixation in cyanobacteria. Although the structure is well understood, roles of environmental cues in the synthesis, positioning, and functional tuning of carboxysomes have not been systematically studied. Fremyella diplosiphon is a model cyanobacterium for assessing impacts of environmental light cues on pho...

2016
Patrick M. Shih Alessandro Occhialini Jeffrey C. Cameron P John Andralojc Martin A. J. Parry Cheryl A. Kerfeld

The antiquity and global abundance of the enzyme, RuBisCO, attests to the crucial and longstanding role it has played in the biogeochemical cycles of Earth over billions of years. The counterproductive oxygenase activity of RuBisCO has persisted over billions of years of evolution, despite its competition with the carboxylase activity necessary for carbon fixation, yet hypotheses regarding the ...

2012
Aaron S. Hawkins Yejun Han Robert K. Bennett Michael W.W. Adams Robert M. Kelly

Background: Thermoacidophilic Sulfolobales contain a novel CO2 fixation pathway; all enzymes but one have been accounted for in Metallosphaera sedula. Results: Enzymes encoded in Msed_0394 and Msed_0406 each exhibit 4-hydroxybutyrate-CoA synthetase activity, consistent with transcriptomic evidence. Conclusion: Msed_0406 is likely the physiologically relevant enzyme in the cycle. Significance: A...

2013
Nicole E. Nozzi John W. K. Oliver Shota Atsumi

Cyanobacteria have great potential as a platform for biofuel production because of their fast growth, ability to fix carbon dioxide gas, and their genetic tractability. Furthermore they do not require fermentable sugars or arable land for growth and so competition with cropland would be greatly reduced. In this perspective we discuss the challenges and areas for improvement most pertinent for a...

Journal: :Journal of plant physiology 2015
Peter G Kroth

As all plastids that have been investigated so far can be traced back to endosymbiotic uptake of cyanobacteria by heterotrophic host cells, they accordingly show a high similarity regarding photosynthesis, which includes both the photosystems and the biochemical reactions around the CO2 fixation via the Calvin-Bassham cycle. Major differences between the different algal and plant groups may inc...

2016
Jie Zhou Taicheng Zhu Zhen Cai Yin Li

Engineering cyanobacteria for production of chemicals from solar energy, CO2 and water is a potential approach to address global energy and environment issues such as greenhouse effect. To date, more than 20 chemicals have been synthesized by engineered cyanobacteria using CO2 as raw materials, and these studies have been well reviewed. However, unlike heterotrophic microorganisms, the low CO2 ...

Journal: :Environmental microbiology 2007
Michael Hügler Harald Huber Stephen J Molyneaux Costantino Vetriani Stefan M Sievert

Autotrophic carbon fixation was characterized in representative members of the three lineages of the bacterial phylum Aquificae. Enzyme activity measurements and the detection of key genes demonstrated that Aquificae use the reductive tricarboxylic acid (TCA) cycle for autotrophic CO(2) fixation. This is the first time that strains of the Hydrogenothermaceae and 'Desulfurobacteriaceae' have bee...

Journal: :The New phytologist 2015
Klaus Winter Joseph A M Holtum J Andrew C Smith

The key components of crassulacean acid metabolism (CAM) - nocturnal fixation of atmospheric CO2 and its processing via Rubisco in the subsequent light period - are now reasonably well understood in terms of the biochemical reactions defining this water-saving mode of carbon assimilation. Phenotypically, however, the degree to which plants engage in the CAM cycle relative to regular C3 photosyn...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید