نتایج جستجو برای: classical krull dimension
تعداد نتایج: 293773 فیلتر نتایج به سال:
We study in detail the algebra Sn in the title which is an algebra obtained from a polynomial algebra Pn in n variables by adding commuting, left (but not two-sided) inverses of the canonical generators of Pn. The algebra Sn is non-commutative and neither left nor right Noetherian but the set of its ideals satisfies the a.c.c., and the ideals commute. It is proved that the classical Krull dimen...
Let φ : (R, m)→ (S, n) be a local homomorphism of commutative noetherian local rings. Suppose that M is a finitely generated S-module. A generalization of Grothendieck’s non-vanishing theorem is proved for M (i.e. the Krull dimension of M over R is the greatest integer i for which the ith local cohomology module of M with respect to m, Hi m(M), is non-zero). It is also proved that the Gorenstei...
Abstract. In previous work, the second author introduced a topology, for spaces of irreducible representations, that reduces to the classical Zariski topology over commutative rings but provides a proper refinement in various noncommutative settings. In this paper, a concise and elementary description of this refined Zariski topology is presented, under certain hypotheses, for the space of simp...
In this paper, we use a characterization of R-modules N such that fdRN = pdRN to characterize Cohen-Macaulay rings in terms of various dimensions. This is done by setting N to be the dth local cohomology functor of R with respect to the maximal ideal where d is the Krull dimension of R.
This is the fourth and last paper in a sequence on Krull dimension for limit groups, answering a question of Z. Sela. In it we finish the proof, analyzing limit groups obtained from other limit groups by adjoining roots. We generalize our work on Scott complexity and adjoining roots from the previous paper in the sequence to the category of limit groups.
For a finite dimensional monomial algebra Λ over a field K we show that the Hochschild cohomology ring of Λ modulo the ideal generated by homogeneous nilpotent elements is a commutative finitely generated Kalgebra of Krull dimension at most one. This was conjectured to be true for any finite dimensional algebra over a field in [13].
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید