نتایج جستجو برای: co roman domination number
تعداد نتایج: 1483928 فیلتر نتایج به سال:
Let G be a graph with no isolated vertex and let N(v) the open neighbourhood of v∈V(G). f:V(G)→{0,1,2} function Vi={v∈V(G):f(v)=i} for every i∈{0,1,2}. We say that f is strongly total Roman dominating on if subgraph induced by V1∪V2 has N(v)∩V2≠∅ v∈V(G)\V2. The domination number G, denoted γtRs(G), defined as minimum weight ω(f)=∑x∈V(G)f(x) among all functions G. This paper devoted to study it ...
for a graph $g$ let $gamma (g)$ be its domination number. we define a graph g to be (i) a hypo-efficient domination graph (or a hypo-$mathcal{ed}$ graph) if $g$ has no efficient dominating set (eds) but every graph formed by removing a single vertex from $g$ has at least one eds, and (ii) a hypo-unique domination graph (a hypo-$mathcal{ud}$ graph) if $g$ has at least two minimum dominating sets...
a set $s$ of vertices in a graph $g$ is a dominating set if every vertex of $v-s$ is adjacent to some vertex in $s$. the domination number $gamma(g)$ is the minimum cardinality of a dominating set in $g$. the annihilation number $a(g)$ is the largest integer $k$ such that the sum of the first $k$ terms of the non-decreasing degree sequence of $g$ is at most the number of edges in $g$. in this p...
The existence of a constant time algorithm for solving different domination problems on the subclass of polygraphs, rotagraphs and fasciagraphs, is shown by means of path algebras. As these graphs include products (the Cartesian, strong, direct, lexicographic) of paths and cycles, we implement the algorithm to get formulas in the case of the domination numbers, the Roman domination numbers and ...
This article has no abstract.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید