نتایج جستجو برای: convolutional neural networks
تعداد نتایج: 641320 فیلتر نتایج به سال:
We review the deep reinforcement learning setting, in which an agent receiving high-dimensional input from an environment learns a control policy without supervision using multilayer neural networks. We then extend the Neural Fitted Q Iteration value-based reinforcement learning algorithm (Riedmiller et al) by introducing a novel variation which we call Regularized Convolutional Neural Fitted Q...
Generative Adversarial Networks (GANs) have shown great promise recently in image generation. Training GANs for text generation has proven to be more difficult, because of the non-differentiable nature of generating text with recurrent neural networks. Consequently, past work has either resorted to pre-training with maximumlikelihood or used convolutional networks for generation. In this work, ...
In this project we work on creating a model to classify images for the Pascal VOC Challenge 2012. We use convolutional neural networks trained on a single GPU instance provided by Amazon via their cloud service Amazon Web Services (AWS) to classify images in the Pascal VOC 2012 data set. We train multiple convolutional neural network models and finally settle on the best model which produced a ...
We introduce a new method to combine the output probabilities of convolutional neural networks which we call Weighted Convolutional Neural Network Ensemble. Each network has an associated weight that makes networks with better performance have a greater influence at the time to classify in relation to networks that performed worse. This new approach produces better results than the common metho...
A convolutional neural network for image classification can be constructed following some mathematical ways since it models the ventral stream in visual cortex which is regarded as a multi-period dynamical system. In this paper, a new point of view is proposed for constructing network models as well as providing a direction to get inspiration or explanation for neural network. If each period in...
Using deep convolutional neural networks for move prediction has led to massive progress in Computer Go. Like Go, Hex has a large branching factor that limits the success of shallow and selective search. We show that deep convolutional neural networks can be used to produce reliable move evaluation in the game of Hex. We begin by collecting self-play games of MoHex 2.0. We then train the neural...
Applying convolutional neural networks to large images is computationally expensive because the amount of computation scales linearly with the number of image pixels. We present a novel recurrent neural network model that is capable of extracting information from an image or video by adaptively selecting a sequence of regions or locations and only processing the selected regions at high resolut...
In this study we compare three different fine-tuning strategies in order to investigate the best way to transfer the parameters of popular deep convolutional neural networks that were trained for a visual annotation task on one dataset, to a new, considerably different dataset. We focus on the concept-based image/video annotation problem and use ImageNet as the source dataset, while the TRECVID...
First impressions influence the behavior of people towards a newly encountered person or a human-like agent. Apart from the physical characteristics of the encountered face, the emotional expressions displayed on it, as well as ambient information affect these impressions. In this work, we propose an approach to predict the first impressions people will have for a given video depicting a face w...
High-resolution depth map can be inferred from a lowresolution one with the guidance of an additional highresolution texture map of the same scene. Recently, deep neural networks with large receptive fields are shown to benefit applications such as image completion. Our insight is that super resolution is similar to image completion, where only parts of the depth values are precisely known. In ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید