نتایج جستجو برای: deep convolutional neural network

تعداد نتایج: 1002734  

2017
Shih-Chieh Su

In this work, we study the topical behavior in a large scale. Both the temporal and the spatial relationships of the behavior are explored with the deep learning architectures combing the recurrent neural network (RNN) and the convolutional neural network (CNN). To make the behavioral data appropriate for the spatial learning in the CNN, several reduction steps are taken in forming the topical ...

2012
Pierre Buyssens Abderrahim Elmoataz Olivier Lézoray

We present a Multiscale Convolutional Neural Network (MCNN) approach for vision–based classification of cells. Based on several deep Convolutional Neural Networks (CNN) acting at different resolutions, the proposed architecture avoid the classical handcrafted features extraction step, by processing features extraction and classification as a whole. The proposed approach gives better classificat...

Journal: :IEEE transactions on neural networks and learning systems 2016
Eder Santana Matthew Emigh Pablo Zerges José Carlos Príncipe

We propose a convolutional recurrent neural network, with Winner-Take-All dropout for high dimensional unsupervised feature learning in multi-dimensional time series. We apply the proposedmethod for object recognition with temporal context in videos and obtain better results than comparable methods in the literature, including the Deep Predictive Coding Networks previously proposed by Chalasani...

2016
Yan Shao Joakim Nivre

This paper presents the machine transliteration systems that we employ for our participation in the NEWS 2016 machine transliteration shared task. Based on the prevalent deep learning models developed for general sequence processing tasks, we use convolutional neural networks to extract character level information from the transliteration units and stack a simple recurrent neural network on top...

2016
Weibin Zhang Wenkang Lei Xiangmin Xu Xiaofeng Xing

In recent years, deep neural networks have been shown to be effective in many classification tasks, including music genre classification. In this paper, we proposed two ways to improve music genre classification with convolutional neural networks: 1) combining maxand averagepooling to provide more statistical information to higher level neural networks; 2) using shortcut connections to skip one...

2016
Jiongxin Liu Yinxiao Li Peter K. Allen Peter N. Belhumeur

Exemplar-based models have achieved great success on localizing the parts of semi-rigid objects. However, their efficacy on highly articulated objects such as humans is yet to be explored. Inspired by hierarchical object representation and recent application of Deep Convolutional Neural Networks (DCNNs) on human pose estimation, we propose a novel formulation that incorporates both hierarchical...

2017
MASOUMEH POORMEHDI GHAEMMAGHAMI

In this master thesis, the problem of tracking humans in video streams by using Deep Learning is examined. We use spatially supervised recurrent convolutional neural networks for visual human tracking. In this method, the recurrent convolutional network uses both the history of locations and the visual features from the deep neural networks. This method is used for tracking, based on the detect...

Journal: :CoRR 2015
Markus Oberweger Paul Wohlhart Vincent Lepetit

We introduce and evaluate several architectures for Convolutional Neural Networks to predict the 3D joint locations of a hand given a depth map. We first show that a prior on the 3D pose can be easily introduced and significantly improves the accuracy and reliability of the predictions. We also show how to use context efficiently to deal with ambiguities between fingers. These two contributions...

Journal: :CoRR 2015
Mingming Wang

Convolutional Neural Network demonstrates high performance on ImageNet Large-Scale Visual Recognition Challenges contest. Nevertheless, the publish results only show overall performance for all images classes. There is no further analysis for what special images get worse results and how they could be improved. In this paper, we provide deep performance analysis base on different types of image...

Journal: :CoRR 2017
Ivica Obadic Gjorgji Madjarov Ivica Dimitrovski Dejan Gjorgjevikj

Traditional recommendation systems rely on past usage data in order to generate new recommendations. Those approaches fail to generate sensible recommendations for new users and items into the system due to missing information about their past interactions. In this paper, we propose a solution for successfully addressing item-cold start problem which uses model-based approach and recent advance...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید