نتایج جستجو برای: deep stacked extreme learning machine
تعداد نتایج: 978067 فیلتر نتایج به سال:
Deep feature learning has recently emerged with demonstrated effectiveness in domain adaptation. In this paper, we propose a Deep Nonlinear Feature Coding framework (DNFC) for unsupervised domain adaptation. DNFC builds on the marginalized stacked denoising autoencoder (mSDA) to extract rich deep features. We introduce two new elements to mSDA: domain divergence minimization by Maximum Mean Dis...
A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coeffi...
Machine Learning, Signal Processing, and Data Analyst Accomplished research scientist with over 5 year of academic experience as well as 4 years of industry experience developing and implementing algorithms for extracting and making sense of different type of data. My expertise goes beyond the usual machine learning topics to include: logistic regression, Neural Networks, Support Vector Machi...
عیب یابی یکی از شاخه های کنترل سلامت سازه ها می باشدکه با توجه به لزوم تشخیص به موقع خرابی ها و جلوگیری از پیشرفت آن ها، یکی از فعال ترین زمینه های تحقیقاتی است. وقوع آسیب در سازه ها باعث تغییر جرم ، سختی و خواص میرایی سازه گردیده و در پی آن ، پاسخ های استاتیکی و دینامیکی سیستم نیز تغییر می کند. امروزه ، بیشتر تحقیقات بر اساس حداقل سازی اختلاف پاسخ سازه سالم و خراب ، انجام می گیرد.در این پژوهش ...
3 Introduction 4 Initial Implementation 6 Deep Learning Implementation 8 Conclusion 11 Appendix 12 References 14
The segmentation of an argumentative text into argument units and their nonargumentative counterparts is the first step in identifying the argumentative structure of the text. Despite its importance for argument mining, unit segmentation has been approached only sporadically so far. This paper studies the major parameters of unit segmentation systematically. We explore the effectiveness of vari...
The classification of breast masses from mammograms into benign or malignant has been commonly addressed with machine learning classifiers that use as input a large set of hand-crafted features, usually based on general geometrical and texture information. In this paper, we propose a novel deep learning method that automatically learns features based directly on the optmisation of breast mass c...
Representation learning, especially which by using deep learning, has been widely applied in classification. However, how to use limited size of labeled data to achieve good classification performance with deep neural network, and how can the learned features further improve classification remain indefinite. In this paper, we propose Horizontal Voting Vertical Voting and Horizontal Stacked Ense...
A hybrid architecture is presented capable of online learning from both labeled and unlabeled samples. It combines both generative and discriminative objectives to derive a new variant of the Deep Belief Network, i.e., the Stacked Boltzmann Experts Network model. The model’s training algorithm is built on principles developed from hybrid discriminative Boltzmann machines and composes deep archi...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید