نتایج جستجو برای: deep stacked extreme learning machine

تعداد نتایج: 978067  

2016
Pengfei Wei Yiping Ke Chi Keong Goh

Deep feature learning has recently emerged with demonstrated effectiveness in domain adaptation. In this paper, we propose a Deep Nonlinear Feature Coding framework (DNFC) for unsupervised domain adaptation. DNFC builds on the marginalized stacked denoising autoencoder (mSDA) to extract rich deep features. We introduce two new elements to mSDA: domain divergence minimization by Maximum Mean Dis...

2017
Yulin Jian Daoyu Huang Jia Yan Kun Lu Ying Huang Tailai Wen Tanyue Zeng Shijie Zhong Qilong Xie

A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coeffi...

2013
Fred K. Gruber

Machine Learning, Signal Processing, and Data Analyst Accomplished research scientist with over 5 year of academic experience as well as 4 years of industry experience developing and implementing algorithms for extracting and making sense of different type of data. My expertise goes beyond the usual machine learning topics to include:  logistic regression, Neural Networks, Support Vector Machi...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید باهنر کرمان - دانشکده مهندسی عمران 1393

عیب یابی یکی از شاخه های کنترل سلامت سازه ها می باشدکه با توجه به لزوم تشخیص به موقع خرابی ها و جلوگیری از پیشرفت آن ها، یکی از فعال ترین زمینه های تحقیقاتی است. وقوع آسیب در سازه ها باعث تغییر جرم ، سختی و خواص میرایی سازه گردیده و در پی آن ، پاسخ های استاتیکی و دینامیکی سیستم نیز تغییر می کند. امروزه ، بیشتر تحقیقات بر اساس حداقل سازی اختلاف پاسخ سازه سالم و خراب ، انجام می گیرد.در این پژوهش ...

Journal: :CoRR 2014
S. Raza Ahmad

3 Introduction 4 Initial Implementation 6 Deep Learning Implementation 8 Conclusion 11 Appendix 12 References 14

2017
Yamen Ajjour Wei-Fan Chen Johannes Kiesel Henning Wachsmuth Benno Stein

The segmentation of an argumentative text into argument units and their nonargumentative counterparts is the first step in identifying the argumentative structure of the text. Despite its importance for argument mining, unit segmentation has been approached only sporadically so far. This paper studies the major parameters of unit segmentation systematically. We explore the effectiveness of vari...

2016
Neeraj Dhungel Gustavo Carneiro Andrew P. Bradley

The classification of breast masses from mammograms into benign or malignant has been commonly addressed with machine learning classifiers that use as input a large set of hand-crafted features, usually based on general geometrical and texture information. In this paper, we propose a novel deep learning method that automatically learns features based directly on the optmisation of breast mass c...

Journal: :CoRR 2013
Jingjing Xie Bing Xu Chuang Zhang

Representation learning, especially which by using deep learning, has been widely applied in classification. However, how to use limited size of labeled data to achieve good classification performance with deep neural network, and how can the learned features further improve classification remain indefinite. In this paper, we propose Horizontal Voting Vertical Voting and Horizontal Stacked Ense...

2015
Alexander Ororbia David Reitter Jian Wu C. Lee Giles

A hybrid architecture is presented capable of online learning from both labeled and unlabeled samples. It combines both generative and discriminative objectives to derive a new variant of the Deep Belief Network, i.e., the Stacked Boltzmann Experts Network model. The model’s training algorithm is built on principles developed from hybrid discriminative Boltzmann machines and composes deep archi...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید