نتایج جستجو برای: distinct edge geodetic decomposition

تعداد نتایج: 468390  

Journal: :J. Comb. Theory, Ser. B 2017
Martin Merker

The Tree Decomposition Conjecture by Barát and Thomassen states that for every tree T there exists a natural number k(T ) such that the following holds: If G is a k(T )-edge-connected simple graph with size divisible by the size of T , then G can be edge-decomposed into subgraphs isomorphic to T . So far this conjecture has only been verified for paths, stars, and a family of bistars. We prove ...

Journal: :European Journal of Pure and Applied Mathematics 2023

Let G be a connected graph of order n and S ⊆ V (G). A closed geodetic cover Gis path-induced dominating set if subgraph <S> has Hamiltonianpath is G. The minimum cardinality geodeticdominating called domination number This study presentsthe characterization the sets some common graphsand edge corona two graphs. numbers thesegraphs are also determined.

2012
A. R. Amiri-Simkooei S. Zaminpardaz

This contribution reviews a few basic concepts of optimization and design of a geodetic network. Proper assessment and analysis of networks is an important task in many geodetic-surveying projects. Appropriate quality-control measures should be defined, and an optimal design should be sought. The quality of a geodetic network is characterized by precision, reliability, and cost. The aim is to p...

Journal: :Eur. J. Comb. 2004
Gerard J. Chang Li-Da Tong Hong-Tsu Wang

Geodetic numbers of graphs and digraphs have been investigated in the literature recently. The main purpose of this paper is to study the geodetic spectrum of a graph. For any two vertices u and v in an oriented graph D, a u–v geodesic is a shortest directed path from u to v. Let I (u, v) denote the set of all vertices lying on a u–v geodesic. For a vertex subset A, let I (A) denote the union o...

Journal: :Optimization Letters 2007
Pierre Hansen Nikolaj van Omme

Given a simple connected graph G = (V, E) the geodetic closure I[S] ⊂ V of a subset S of V is the union of all sets of nodes lying on some geodesic (or shortest path) joining a pair of nodes vk, vl ∈ S. The geodetic number, denoted by g(G), is the smallest cardinality of a node set S∗ such that I[S∗] = V . In “The geodetic number of a graph”, Mathematical and Computer Modelling 17 (June 1993) 8...

Journal: :CoRR 2016
Carlos E. Frasser George N. Vostrov

This paper describes a new approach to the problem of generating the class of all geodetic graphs homeomorphic to a given geodetic one. An algorithmic procedure is elaborated to carry out a systematic finding of such a class of graphs. As a result, the enumeration of the class of geodetic graphs homeomorphic to certain Moore graphs has been performed.

Journal: :Discussiones Mathematicae Graph Theory 2010
A. P. Santhakumaran S. V. Ullas Chandran

For two vertices u and v of a connected graph G, the set IG[u, v] consists of all those vertices lying on u − v geodesics in G. Given a set S of vertices of G, the union of all sets IG[u, v] for u, v ∈ S is denoted by IG[S]. A set S ⊆ V (G) is a geodetic set if IG[S] = V (G) and the minimum cardinality of a geodetic set is its geodetic number g(G) of G. Bounds for the geodetic number of strong ...

2009
Hans-Peter Plag Chris Rizos Markus Rothacher Ruth Neilan

Modern geodetic observations from a wide range of space and terrestrial technologies contribute to our knowledge of the solid Earth, atmosphere, ocean, cryosphere, and land water storage. These geodetic observations record the “fingerprints” of global change processes and thus are a crucial independent source of high accuracy information for many global change studies. Many of the geodetic tech...

2007
Pranava K Jha Naveen Agnihotri Rajesh Kumar

Let G be a connected graph on n vertices, and let ; ; and be edge-disjoint cycles in G such that (i) ; (resp. ;) are vertex-disjoint and (ii) jj + jj = jj+ jj = n, where jj denotes the length of. We say that ; ; and yield two edge-disjoint hamiltonian cycles by edge exchanges if the four cycles respectively contain edges e; f; g and h such that each of (? feg) S (? ffg) S fg; hg and (? fgg) S (...

Journal: :Journal of Graph Theory 2006
János Barát Carsten Thomassen

We conjecture that, for each tree T , there exists a natural number kT such that the following holds: If G is a kT -edge-connected graph such that |E(T )| divides |E(G)|, then the edges of G can be divided into parts, each of which is isomorphic to T . We prove that for T = K1,3 (the claw), this holds if and only if there exists a (smallest) natural number kt such that every kt-edge-connected g...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید