نتایج جستجو برای: electric load forecasting
تعداد نتایج: 324983 فیلتر نتایج به سال:
This paper studies charging scheduling problem of electric vehicles (EVs) in the scale of a microgrid (e.g., a university or town) where a set of charging stations are controlled by a central aggregator. A bi-objective optimization problem is formulated to jointly optimize total charging cost and user convenience. Then, a close-to-optimal online scheduling algorithm is proposed as solution. The...
A study on plug-in electric vehicle (PEV) charging load and its impacts on distribution transformers loss-of-life, is presented in this paper. The assessment is based on residential PEV battery charging. As the exact forecasting of the charging load is not possible, the method for predicting the electric vehicle (EV) charging load is stochastically formulated. With the help of the stochastic mo...
This paper proposes a novel neural model to the problem of short-term load forecasting (STLF). The neural model is made up of two self-organizing map (SOM) nets—one on top of the other. It has been successfully applied to domains in which the context information given by former events plays a primary role. The model was trained on load data extracted from a Brazilian electric utility, and compa...
It is important to understand and forecast a typical or a particularly household daily consumption in order to design and size suitable renewable energy systems and energy storage. In this research for Short Term Load Forecasting (STLF) it has been used Artificial Neural Networks (ANN) and, despite the consumption unpredictability, it has been shown the possibility to forecast the electricity c...
Due to the electricity market deregulation and integration of renewable resources, electrical load forecasting is becoming increasingly important for the Chinese government in recent years. The electric load cannot be exactly predicted only by a single model, because the short-term electric load is disturbed by several external factors, leading to the characteristics of volatility and instabili...
A method for spatial electric load forecasting using elements from evolutionary algorithms is presented. The method uses concepts from knowledge extraction algorithms and linguistic rules’ representation to characterize the preferences for land use into a spatial database. The future land use preferences in undeveloped zones in the electrical utility service area are determined using an evoluti...
Review and classification of electric load forecasting (LF) techniques based on artificial neural networks (ANN) is presented. A basic ANNs architectures used in LF reviewed. A wide range of ANN oriented applications for forecasting are given in the literature. These are classified into five groups: (1) ANNs in short-term LF, (2) ANNs in mid-term LF, (3) ANNs in long-term LF, (4) Hybrid ANNs in...
⎯ In the process of power load forecasting, electricity experts always divide the forecasting situation into several categories, and the same category uses the same forecasting model. There exists such a situation that some load curve which domain experts consider belonging to the same category has shown the different characteristics, but some load curve which belongs to different category see...
This paper proposes a novel method for load forecast, which integrates wavelet transform and extreme learning machine. In order to capture more internal features, wavelet transform is used to decompose the load series into a set of subcomponents, which are more predictable. Then all the components are separately processed by extreme learning machine. Numerical testing shows that the proposed me...
This paper presents a method of improving the performance of a day-ahead 24-h load curve and peak load forecasting. The next-day load curve is forecasted using radial basis function (RBF) neural network models built using the best design parameters. To improve the forecasting accuracy, the load curve forecasted using the RBF network models is corrected by the weighted sum of both the error of t...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید