نتایج جستجو برای: fractional di fferential equation

تعداد نتایج: 535483  

ژورنال: پژوهش های ریاضی 2022

In this Article, proposes an approximation for the solution of the Riccati equation based on the use of exponential spline functions. Then the exponential spline equations are obtained and the differential equation of the fractional Riccati is discretized. The effect of performing this mathematical operation is obtained from an algebraic system of equations. To illustrate the benefits of the me...

2005
Vasily E. Tarasov George M. Zaslavsky

We derive the fractional generalization of the Ginzburg–Landau equation from the variational Euler–Lagrange equation for fractal media. To describe fractal media we use the fractional integrals considered as approximations of integrals on fractals. Some simple solutions of the Ginzburg–Landau equation for fractal media are considered and different forms of the fractional Ginzburg–Landau equatio...

2011
Giampiero Palatucci Ovidiu Savin Enrico Valdinoci

We study existence, uniqueness and other geometric properties of the minimizers of the energy functional ‖u‖Hs(Ω) + ∫ Ω W (u) dx, where ‖u‖Hs(Ω) denotes the total contribution from Ω in the H norm of u and W is a double-well potential. We also deal with the solutions of the related fractional elliptic Allen-Cahn equation on the entire space R. The results collected here will also be useful for ...

Journal: :SIAM J. Numerical Analysis 2009
Xianjuan Li Chuanju Xu

In this paper, we consider the numerical solution of the time fractional diffusion equation. Essentially, the time fractional diffusion equation differs from the standard diffusion equation in the time derivative term. In the former case, the first-order time derivative is replaced by a fractional derivative, making the problem global in time. We propose a spectral method in both temporal and s...

Journal: :Physical review. E 2016
Jaume Masoliver

We generalize the telegrapher's equation to allow for anomalous transport. We derive the space-time fractional telegrapher's equation using the formalism of the persistent random walk in continuous time. We also obtain the characteristic function of the space-time fractional process and study some particular cases and asymptotic approximations. Similarly to the ordinary telegrapher's equation, ...

2014
Gang wei Wang Tian zhou Xu Tao Feng

In this paper, using the Lie group analysis method, we study the invariance properties of the time fractional fifth-order KdV equation. A systematic research to derive Lie point symmetries to time fractional fifth-order KdV equation is performed. In the sense of point symmetry, all of the vector fields and the symmetry reductions of the fractional fifth-order KdV equation are obtained. At last,...

Journal: :Ultrasound in medicine & biology 2014
Sverre Holm Sven Peter Näsholm

A set of wave equations with fractional loss operators in time and space are analyzed. The fractional Szabo equation, the power law wave equation and the causal fractional Laplacian wave equation are all found to be low-frequency approximations of the fractional Kelvin-Voigt wave equation and the more general fractional Zener wave equation. The latter two equations are based on fractional const...

2014
BIN ZHENG Bin Zheng

In this paper, we are concerned with seeking exact solutions for fractional differential-difference equations by an extended Riccati sub-ODE method. The fractional derivative is defined in the sense of the modified Riemann-liouville derivative. By a combination of this method and a fractional complex transformation, the iterative relations from indices n to n ± 1 are established. As for applica...

2007
Hongmei Zhang Fawang Liu F. W. Liu

In this paper, the space-time Riesz fractional partial differential equations with periodic conditions are considered. The equations are obtained from the integral partial differential equation by replacing the time derivative with a Caputo fractional derivative and the space derivative with Riesz potential. The fundamental solutions of the space Riesz fractional partial differential equation (...

2017
Sylvain De Moor

We study the stochastic fractional diffusive limit of a kinetic equation involving a small parameter and perturbed by a smooth random term. Generalizing the method of perturbed test functions, under an appropriate scaling for the small parameter, and with the moment method used in the deterministic case, we show the convergence in law to a stochastic fluid limit involving a fractional Laplacian.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید