نتایج جستجو برای: fuzzy type 2
تعداد نتایج: 3537834 فیلتر نتایج به سال:
This paper presents a new clustering algorithm named improved type-2 possibilistic fuzzy c-means (IT2PFCM) for fuzzy segmentation of magnetic resonance imaging, which combines the advantages of type 2 fuzzy set, the fuzzy c-means (FCM) and Possibilistic fuzzy c-means clustering (PFCM). First of all, the type 2 fuzzy is used to fuse the membership function of the two segmentation algorithms (FCM...
Fuzzy set theory has been proposed as a means for modeling the vagueness in complex systems. Fuzzy systems usually employ type-1 fuzzy sets, representing uncertainty by numbers in the range [0, 1]. Despite commercial success of fuzzy logic, a type-1 fuzzy set (T1FS) does not capture uncertainty in its manifestations when it arises from vagueness in the shape of the membership function. Such unc...
In this paper a review of type-2 fuzzy logic applications in pattern recognition, classification and clustering problems is presented. Recently, type-2 fuzzy logic has gained popularity in a wide range of applications due to its ability to handle higher degrees of uncertainty. In particular, there have been recent applications of type-2 fuzzy logic in the fields of pattern recognition, classifi...
This paper describes an interval type-2 fuzzy modeling framework, reduced-set vector-based interval type-2 fuzzy neural network (RV-based IT2FNN), to characterize the representation in fuzzy logic inference procedure. The model proposed introduces the concept of interval kernel to interval type-2 fuzzy membership, and provides an architecure to extract reduced-set vectors for generating interva...
Molodtsov introduced the theory of soft sets, which can be used as a general mathematical tool for dealing with uncertainty. This paper aims to introduce the concept of the type-2 fuzzy soft set by integrating the type-2 fuzzy set theory and the soft set theory. Some operations on the type-2 fuzzy soft sets are given. Furthermore, we investigate the decision making based on type-2 fuzzy soft se...
This paper presents the development and design of a graphical user interface and a command line programming toolbox for construction, edition and observation of Interval Type-2 Fuzzy Inference Systems. The Interval Type-2 Fuzzy Logic System Toolbox (IT2FLS), is an environment for interval type-2 fuzzy logic inference system development. Tools that cover the different phases of the fuzzy system ...
Type-2 fuzzy sets let us model and minimize the effects of uncertainties in rule-base fuzzy logic systems. However, they are difficult to understand for a variety of reasons which we enunciate. In this paper, we strive to overcome the difficulties by: 1) establishing a small set of terms that let us easily communicate about type-2 fuzzy sets and also let us define such sets very precisely, 2) p...
In this research, we introduce a classification procedure based on rule induction and fuzzy reasoning. The classifier generalizes attribute information to handle uncertainty, which often occurs in real data. To induce rules, define the corresponding system. A transformation of derived rules into interval type-2 is provided as well. fuzzification applied optimized with respect footprint uncertai...
The join dependency provides the basis for obtaining lossless join decomposition in a classical relational schema. The existence of Join dependency shows that that the tables always represent the correct data after being joined. Since the classical relational databases cannot handle imprecise data, they were extended to fuzzy relational databases so that uncertain, ambiguous, imprecise and part...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید