نتایج جستجو برای: g closed
تعداد نتایج: 554930 فیلتر نتایج به سال:
We prove that if G is an algebraic D-group (in the sense of Buium [B]) over a differentially closed field (K, ∂) of characteristic 0, then the first order structure consisting of G together with the algebraic D-subvarieties of G,G × G, . . ., has quantifier-elimination. In other words, the projection on Gn of a D-constructible subset of Gn+1 is Dconstructible. Among the consequences is that any...
Let G be a multidigraph without loops. Let l i be the upper bounds for arcs a i ∈ A(G) to be visited by any closed directed walk in G. We prove that there exists a sequence of finite integers {l i } for which every arc (and every parallel number of arcs) reversal in G decreases the number of closed directed walks if and only if every arc belongs to an elementary directed cycle in G.
We give a necessary and sufficient condition, in terms of a certain reflection principle, for every unconditionally closed subset of a group G to be algebraic. As a corollary, we prove that this is always the case when G is a direct product of an Abelian group with a direct product (sometimes also called a direct sum) of a family of countable groups. This is the widest class of groups known to ...
Let $H$ and $K$ be compact subgroups of locally compact group $G$. By considering the double coset space $Ksetminus G/H$, which equipped with an $N$-strongly quasi invariant measure $mu$, for $1leq pleq +infty$, we make a norm decreasing linear map from $L^p(G)$ onto $L^p(Ksetminus G/H,mu)$ and demonstrate that it may be identified with a quotient space of $L^p(G)$. In addition, we illustrate t...
In this paper, we consider a class of connected oriented (with respect to Z/p) closed G-manifolds with a non-empty finite fixed point set, each of which is G-equivariantly formal, where G = Z/p and p is an odd prime. Using localization theorem and equivariant index, we give an explicit description of the mod p equivariant cohomology ring of such a G-manifold in terms of algebra. This makes ...
Let $kgeq 1$ be an integer, and $G=(V,E)$ be a finite and simplegraph. The closed neighborhood $N_G[e]$ of an edge $e$ in a graph$G$ is the set consisting of $e$ and all edges having a commonend-vertex with $e$. A signed Roman edge $k$-dominating function(SREkDF) on a graph $G$ is a function $f:E rightarrow{-1,1,2}$ satisfying the conditions that (i) for every edge $e$of $G$, $sum _{xin N[e]} f...
Sufficient conditions are given for a mapping to be γ -G inverse differentiable. Constrained implicit function theorems for γ -G inverse differentiable mappings are obtained, where the constraint is taken to be either a closed convex cone or a closed subset. A theorem without assuming the γ -G inverse differentiability in a finite-dimensional space is also presented.
The problem of classification of closed local minimal nets on surfaces of constant negative curvature has been formulated in [3], [4] in the context of the famous Plateau problem in the one-dimensional case. In [6] an asymptotic for log ♯(W (g)) as g → +∞ where g is genus and W (g) is the set of regular single-face closed local minimal nets on surfaces of curvature −1 has been obtained. It has ...
We proceed with an analysis of 1-basedness for bounded hyperdefinable groups of the form G/G where G = E(K) is the semialgebraic connected component of the K-points of an elliptic curve over a saturated real closed field K, or G a truncation of E(K); we follow the method developed in [1]. We then relate the map G→ G/G with the algebraic geometric notion of reduction, and we characterize 1-based...
We prove that if R is a Hensel local ring with infinite residue field k, the natural map Hi(GLn(R),Z/p) → Hi(GLn(k), Z/p) is an isomorphism for i ≤ 3, p 6= char k. This implies rigidity for Hi(GLn), i ≤ 3, which in turn implies the Friedlander–Milnor conjecture in positive characteristic in degrees ≤ 3. A fundamental question in the homology of linear groups is that of rigidity: given a smooth ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید