نتایج جستجو برای: general autoregressive conditional heteroskedastic
تعداد نتایج: 783460 فیلتر نتایج به سال:
Ecological data often exhibit spatial pattern, which can be modeled as autocorrelation. Conditional autoregressive (CAR) and simultaneous autoregressive (SAR) models are network-based models (also known as graphical models) specifically designed to model spatially autocorrelated data based on neighborhood relationships. We identify and discuss six different types of practical ecological inferen...
This paper provides an effective approach for forecasting return volatility via threshold heteroskedastic models of the daily asset price range, defined as the difference between the highest and lowest log asset price recorded throughout the day. We propose a general model specification, allowing the intra-day high-low price range to depend nonlinearly on past information, or an exogenous varia...
We study the asymptotic behavior of the least squares estimators of the unknown parameters of general pth-order bifurcating autoregressive processes. Under very weak assumptions on the driven noise of the process, namely conditional pair-wise independence and suitable moment conditions, we establish the almost sure convergence of our estimators together with the quadratic strong law and the cen...
In this paper the class of BL-GARCH (Bilinear General AutoregRessive Conditional Heteroskedasticity) models is introduced. The proposed model is a modification to the BL-GARCH model proposed by Storti and Vitale (2003). Stationary conditions and autocorrelation structure for special cases of these new models are derived. Maximum likelihood estimation of the model is also considered. Some simula...
There are many studies on the business cycle indicators in the past decades, but mostly focusing on the asymmetric and non-linear features of business cycles incorporated into the conditional mean equation rather than the conditional variance formulation. Recently, the hypothesis of volatility asymmetry in business cycle indicators has been re-examined by, for instance, Ho and Tsui (2003 and 20...
The hybrid Monte Carlo (HMC) algorithm is used for Bayesian analysis of the generalized autoregressive conditional heteroscedasticity (GARCH) model. The HMC algorithm is one of Markov chain Monte Carlo (MCMC) algorithms and it updates all parameters at once. We demonstrate that how the HMC reproduces the GARCH parameters correctly. The algorithm is rather general and it can be applied to other ...
One puzzling behavior of asset returns for various frequencies is the of ten observed positive autocorrelation at lag To some extent this can be explained by standard asset pricing models when assuming time varying risk premia However one often nds better results when directly tting an autoregressive model for which there is little economic foundation One may ask whether the underlying process ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید