نتایج جستجو برای: granular materials
تعداد نتایج: 457558 فیلتر نتایج به سال:
Based on the micro-mechanical model recently developed by Nemat-Nasser S. (J. Mech. Phys. Solids 48 (2000) 1541), a three-dimensional continuum mechanics model is presented for the deformation of granular materials which carry the applied load through frictional contacts. The model incorporates the anisotropy (or fabric) which develops as a frictional granular mass is deformed in shear, and inc...
On a microscopic scale, a pyrotechnic material is made of a polymer matrix containing grains with different sizes and shapes. Its physical behaviour can be predicted by homogenization. Information about the morphology of the grains can be obtained by different ways. One of these ways is 3D image processing. This has been made easier by the use of a new imaging technique, the microtomography, al...
We systematically investigate the incremental response of various equilibrium states of dense 2D model granular materials, along the biaxial compression path (σ11 < σ22, σ12 = 0). Stress increments are applied in arbitrary directions in 3dimensional stress space (σ11,σ22,σ12). In states with stable contact networks we compute the stiffness matrix and the elastic moduli, and separate elastic and...
We investigate shear strength properties of wet granular materials in the pendular state (i.e., the state where the liquid phase is discontinuous) as a function of water content. Sand and glass beads were wetted and tested in a direct shear cell and under various confining pressures. In parallel, we carried out three-dimensional molecular dynamics simulations by using an explicit equation expre...
Granular materials segregate. Small differences in either size or density lead to flow-induced segregation, a complex phenomenon without parallel in fluids. Modeling of mixing and segregation processes requires the confluence of several tools, including continuum and discrete descriptions (particle dynamics, Monte Carlo simulations, cellular automata computations) and, often, considerable geome...
We analyze stress transmission in wet granular media in the pendular state by means of three-dimensional molecular-dynamics simulations. We show that the tensile action of capillary bonds induces a self-stressed particle network organized in two percolating "phases" of positive and negative particle pressures. Various statistical descriptors of the microstructure and bond force network are used...
The macroscopic cohesion of granular materials made up of sticky particles depends on the particle shapes. We address this issue by performing contact dynamics simulations of 2D packings of nonconvex aggregates. We find that the macroscopic cohesion is strongly dependent on the strain and stress inhomogeneities developing inside the material. The largest cohesion is obtained for nearly homogene...
The evolution of wide shear zones or shear bands was investigated experimentally and numerically for quasistatic dry granular flows in split bottom shear cells. We compare the behavior of materials consisting of beads, irregular grains, such as sand, and elongated particles. Shearing an initially random sample, the zone width was found to significantly decrease in the first stage of the process...
We investigate the two-dimensional packing of extremely prolate (aspect ratio alpha=L/D>10) granular materials, comparing experiments with Monte Carlo simulations. The average packing fraction of particles with aspect ratio alpha=12 is 0.68+/-0.03. We quantify the orientational correlation of particles and find a correlation length of two particle lengths. The functional form of the orientation...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید