نتایج جستجو برای: hopf algebras

تعداد نتایج: 50155  

1998
Liu Zhao

Two general families of new quantum deformed current algebras are proposed and identified both as infinite Hopf family of algebras, a structure which enable one to define “tensor products” of these algebras. The standard quantum affine algebras turn out to be a very special case of both algebra families, in which case the infinite Hopf family structure degenerates into standard Hopf algebras. T...

2005
IMRE BÁLINT

We study Galois extensions M (co-)H ⊂ M for H-(co)module algebras M if H is a Frobenius Hopf algebroid. The relation between the action and coaction pictures is analogous to that found in Hopf-Galois theory for finite dimensional Hopf algebras over fields. So we obtain generalizations of various classical theorems of Kreimer-Takeuchi, Doi-Takeuchi and Cohen-FischmanMontgomery. We find that the ...

2009
Thomas Timmermann

We introduce C∗-pseudo-multiplicative unitaries and concrete Hopf C∗-bimodules for the study of quantum groupoids in the setting of C∗-algebras. These unitaries and Hopf C∗-bimodules generalize multiplicative unitaries and Hopf C∗-algebras and are analogues of the pseudo-multiplicative unitaries and Hopf–von Neumann-bimodules studied by Enock, Lesieur and Vallin. To each C∗-pseudo-multiplicativ...

1998
Hans-Jürgen Schneider HANS-JÜRGEN SCHNEIDER

We propose the following principle to study pointed Hopf algebras, or more generally, Hopf algebras whose coradical is a Hopf subalgebra. Given such a Hopf algebra A, consider its coradical filtration and the associated graded coalgebra grA. Then grA is a graded Hopf algebra, since the coradical A0 of A is a Hopf subalgebra. In addition, there is a projection π : grA → A0; let R be the algebra ...

2003
MARCELO AGUIAR NANTEL BERGERON

A combinatorial Hopf algebra is a graded connected Hopf algebra over a field k equipped with a character (multiplicative linear functional) ζ : H → k. We show that the terminal object in the category of combinatorial Hopf algebras is the algebra QSym of quasi-symmetric functions; this explains the ubiquity of quasi-symmetric functions as generating functions in combinatorics. We illustrate this...

2003

We introduce and study a Hopf algebra containing the descent algebra as a sub-Hopf-algebra. It has the main algebraic properties of the descent algebra, and more: it is a sub-Hopf-algebra of the direct sum of the symmetric group algebras; it is closed under the corresponding inner product; it is cocommutative, so it is an enveloping algebra; it contains all Lie idempotents of the symmetric grou...

2008
LARS KADISON

We prove that a depth two Hopf subalgebra K of a semisimple Hopf algebra H is normal (where the ground field k is algebraically closed of characteristic zero). This means on the one hand that a Hopf subalgebra is normal when inducing (then restricting) modules several times as opposed to one time creates no new simple constituents. This point of view was taken in the paper [13] which establishe...

1997
Gregory D. Henderson James P. Lin

We construct spectral sequences which provide a way to compute the cohomology theory that classifies extensions of graded connected Hopf algebras over a commutative ring as described by William M. Singer. Specifically, for (A,B) an abelian matched pair of graded connected R-Hopf algebras, we construct a pair of spectral sequences relating H∗(B,A) to Ext∗,∗ B (R,Cotor ∗,∗ A (R,R)). To illustrate...

2004
D. BULACU S. CAENEPEEL F. PANAITE

We generalize various properties of Yetter-Drinfeld modules over Hopf algebras to quasi-Hopf algebras. The dual of a finite dimensional Yetter-Drinfeld module is again a Yetter-Drinfeld module. The algebra H 0 in the category of Yetter-Drinfeld modules that can be obtained by modifying the multiplication in a proper way is quantum commutative. We give a Structure Theorem for Hopf modules in the...

2007
Marcelo Aguiar M. AGUIAR

Infinitesimal bialgebras were introduced by Joni and Rota [J-R]. An infinitesimal bialgebra is at the same time an algebra and a coalgebra, in such a way that the comultiplication is a derivation. In this paper we define infinitesimal Hopf algebras, develop their basic theory and present several examples. It turns out that many properties of ordinary Hopf algebras possess an infinitesimal versi...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید