نتایج جستجو برای: hyers ulam rassias
تعداد نتایج: 2129 فیلتر نتایج به سال:
Sometime in modeling applied problems there may be a degree of uncertainty in the parameters used in the model or some measurements may be imprecise. Due to such features, we are tempted to consider the study of functional equations in the fuzzy setting. The notion of fuzzy sets was first introduced by Zadeh [31] in 1965 which is a powerful hand set for modeling uncertainty and vagueness in var...
In this paper we are going to study the Hyers{Ulam{Rassias typesof stability for nonlinear, nonhomogeneous Volterra integral equations with delayon nite intervals.
Let X,Y be complex vector spaces. Recently, Park and Th.M. Rassias showed that if a mapping f : X → Y satisfies f(x+ iy) + f(x− iy) = 2f(x)− 2f(y) (1) for all x, y ∈ X, then the mapping f : X → Y satisfies f(x+ y) + f(x− y) = 2f(x) + 2f(y) for all x, y ∈ X. Furthermore, they proved the generalized Hyers-Ulam stability of the functional equation (1) in complex Banach spaces. In this paper, we wi...
We introduce three reasonable versions of fuzzy approximately additive functions in fuzzy normed spaces. More precisely, we show under some suitable conditions that an approximately additive function can be approximated by an additive mapping in a fuzzy sense. © 2007 Elsevier B.V. All rights reserved. MSC: primary 46S40secondary 39B52 39B82 26E50 46S50
In 1940, Ulam [1] proposed the following stability problem: “When is it true that a function which satisfies some functional equation approximatelymust be close to one satisfying the equation exactly?” Next year, Hyers [2] gave an answer to this problem for additive mappings between Banach spaces. Furthermore, Aoki [3] and Rassias [4] obtained independently generalized results of Hyers’ theorem...
and Applied Analysis 3 Clearly, every Menger PN-space is probabilistic metric space having a metrizable uniformity on X if supa<1T a, a 1. Definition 1.3. Let X,Λ, T be a Menger PN-space. i A sequence {xn} in X is said to be convergent to x in X if, for every > 0 and λ > 0, there exists positive integer N such that Λxn−x > 1 − λ whenever n ≥ N. ii A sequence {xn} in X is called Cauchy sequence ...
In this paper, the authors investigate the generalized Hyers-UlamAoki-Rassias stability of a quartic functional equation g(2x+ y + z) + g(2x+ y − z) + g(2x− y + z) + g(−2x+ y + z) + 16g(y) + 16g(z) = 8[g(x+ y) + g(x− y) + g(x+ z) + g(x− z)] + 2[g(y + z) + g(y − z)] + 32g(x). (1) The above equation (1) is modified and its Hyers-Ulam-Aoki-Rassias stability for the following quartic functional equ...
Fractional calculus is nowadays an efficient tool in modelling many interesting nonlinear phenomena. This study investigates, a novel way, the Ulam–Hyers (HU) and Ulam–Hyers–Rassias (HUR) stability of differential equations with general conformable derivative (GCD). In our analysis, we employ some version Banach fixed-point theory (FPT). this generalize several earlier results. Two examples are...
<abstract><p>We prove existence and uniqueness of solutions to discrete fractional equations that involve Riemann-Liouville Caputo derivatives with three-point boundary conditions. The results are obtained by conducting an analysis via the Banach principle Brouwer fixed point criterion. Moreover, we stability, including Hyers-Ulam Hyers-Ulam-Rassias type results. Finally, some numer...
in the present paper a solution of the generalizedquadratic functional equation$$f(kx+ y)+f(kx+sigma(y))=2k^{2}f(x)+2f(y),phantom{+} x,yin{e}$$ isgiven where $sigma$ is an involution of the normed space $e$ and$k$ is a fixed positive integer. furthermore we investigate thehyers-ulam-rassias stability of the functional equation. thehyers-ulam stability on unbounded domains is also studied.applic...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید