نتایج جستجو برای: independent domination number
تعداد نتایج: 1554799 فیلتر نتایج به سال:
The open neighborhood of a vertex $v$ of a graph $G$ is the set $N(v)$ consisting of all vertices adjacent to $v$ in $G$. For $Dsubseteq V(G)$, we define $overline{D}=V(G)setminus D$. A set $Dsubseteq V(G)$ is called a super dominating set of $G$ if for every vertex $uin overline{D}$, there exists $vin D$ such that $N(v)cap overline{D}={u}$. The super domination number of $G$ is the minimum car...
Let G = (V,E) be a graph. A set S ⊂ V (G) is a hop dominating set of G if for every v ∈ V − S, there exists u ∈ S such that d(u, v) = 2. The minimum cardinality of a hop dominating set of G is called a hop domination number of G and is denoted by γh(G). In this paper we characterize the family of trees and unicyclic graphs for which γh(G) = γt(G) and γh(G) = γc(G) where γt(G) and γc(G) are the ...
Let γ(G) and ι(G) be the domination and independent domination numbers of a graph G, respectively. Introduced by Sumner and Moorer [23], a graph G is domination perfect if γ(H) = ι(H) for every induced subgraph H ⊆ G. In 1991, Zverovich and Zverovich [26] proposed a characterization of domination perfect graphs in terms of forbidden induced subgraphs. Fulman [15] noticed that this characterizat...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید