نتایج جستجو برای: k rainbow dominating function
تعداد نتایج: 1555914 فیلتر نتایج به سال:
OF THE DISSERTATION Applications and Variations of Domination in Graphs by Paul Andrew Dreyer, Jr. Dissertation Director: Fred S. Roberts In a graph G = (V, E), S ⊆ V is a dominating set of G if every vertex is either in S or joined by an edge to some vertex in S. Many different types of domination have been researched extensively. This dissertation explores some new variations and applications...
A path in an edge colored graph is said to be a rainbow path if no two edges on the path have the same color. An edge colored graph is (strongly) rainbow connected if there exists a (geodesic) rainbow path between every pair of vertices. The (strong) rainbow connectivity of a graph G, denoted by (src(G), respectively) rc(G) is the smallest number of colors required to edge color the graph such ...
The concept of rainbow connection was introduced by Chartrand et al. in 2008. It is fairly interesting and recently quite a lot papers have been published about it. In this survey we attempt to bring together most of the results and papers that dealt with it. We begin with an introduction, and then try to organize the work into five categories, including (strong) rainbow connection number, rain...
A path in an edge colored graph is said to be a rainbow path if no two edges on the path have the same color. An edge colored graph is (strongly) rainbow connected if there exists a (geodesic) rainbow path between every pair of vertices. The (strong) rainbow connectivity of a graph G, denoted by (src(G), respectively) rc(G) is the smallest number of colors required to edge color the graph such ...
A rainbow colouring of a connected graph is a colouring of the edges of the graph, such that every pair of vertices is connected by at least one path in which no two edges are coloured the same. Such a colouring using minimum possible number of colours is called an optimal rainbow colouring, and the minimum number of colours required is called the rainbow connection number of the graph. A Chord...
Let G be an edge-colored graph. A rainbow (heterochromatic, or multicolored) path of G is such a path in which no two edges have the same color. Let the color degree of a vertex v to be the number of different colors that are used on edges incident to v, and denote it by dc(v). In a previous paper, we showed that if dc(v) ≥ k (color degree condition) for every vertex v of G, then G has a rainbo...
This article proposes a scenario-based algorithm for cluster formation and management in mobile ad hoc networks. Depending on the application a centralized or distributed algorithm based on (k, r) −Dominating Set is used for the selection of clusterheads and gateway nodes. Here k is the minimum number of clusterheads per node in the network and r is the maximum number of hops between the node a...
In the Connected Dominating Set problem we are given as input a graph G and a positive integer k, and are asked if there is a set S of at most k vertices of G such that S is a dominating set of G and the subgraph induced by S is connected. This is a basic connectivity problem that is known to be NP-complete, and it has been extensively studied using several algorithmic approaches. In this paper...
a {em roman dominating function} on a graph $g = (v ,e)$ is a function $f : vlongrightarrow {0, 1, 2}$ satisfying the condition that every vertex $v$ for which $f (v) = 0$ is adjacent to at least one vertex $u$ for which $f (u) = 2$. the {em weight} of a roman dominating function is the value $w(f)=sum_{vin v}f(v)$. the roman domination number of a graph $g$, denoted by $gamma_r(g)$, equals the...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید