نتایج جستجو برای: laplacian energy
تعداد نتایج: 678183 فیلتر نتایج به سال:
Bony and Häfner have recently obtained positive commutator estimates on the Laplacian in the low-energy limit on asymptotically Euclidean spaces; these estimates can be used to prove local energy decay estimates if the metric is non-trapping. We simplify the proof of the estimates of Bony-Häfner and generalize them to the setting of scattering manifolds (i.e. manifolds with large conic ends), b...
In this paper we give a simple characterization of the Laplacian spectra of a family of graphs as the eigenvalues of symmetric tridiagonal matrices. In addition, we apply our result to obtain an upper and lower bounds for the Laplacian-energy-like invariant of these graphs. The class of graphs considered are obtained by copies of modified generalized Bethe trees (obtained by joining the vertice...
We study the low energy asymptotics of periodic and random Laplace operators on Cayley graphs of amenable, finitely generated groups. For the periodic operator the asymptotics is characterised by the van Hove exponent or zeroth Novikov-Shubin invariant. The random model we consider is given in terms of an adjacency Laplacian on site or edge percolation subgraphs of the Cayley graph. The asympto...
For any simple connected undirected graph, it is well known that the Kirchhoff and multiplicative degree-Kirchhoff indices can be computed using the Laplacian matrix. We show that the same is true for the additive degree-Kirchhoff index and give a compact Matlab program that computes all three Kirchhoffian indices with the Laplacian matrix as the only input.
In this paper an estimator for speech enhancement based on Laplacian Mixture Model has been proposed. The proposed method, estimates the complex DFT coefficients of clean speech from noisy speech using the MMSE estimator, when the clean speech DFT coefficients are supposed mixture of Laplacians and the DFT coefficients of noise are assumed zero-mean Gaussian distribution. Furthermore, the MMS...
In this paper, we estimate the magnetic Laplacian energy norm in appropriate planar domains under a weak regularity hypothesis on field. Our main contribution is an averaging estimate, valid small cells, allowing us to pass from non-uniform uniform fields. As matter of application, derive new upper and lower bounds lowest eigenvalue Dirichlet which match regime large field intensity. Furthermor...
We study the limiting behavior of solutions to boundary value nonlinear problems involving fractional Laplacian order 2s when parameter s tends zero. In particular, we show that least-energy converge (up a subsequence) nontrivial nonnegative solution problem in terms logarithmic Laplacian, i.e. pseudodifferential operator with Fourier symbol \(\ln (|\xi |^2)\). These results are motivated by so...
In recent years, learning on manifolds has attracted much attention in the academia community. The idea that the distribution of real-life data forms a low dimensional manifold embedded in the ambient space works quite well in practice, with applications such as ranking, dimensionality reduction, semi-supervised learning and clustering. This paper focuses on ranking on manifolds. Traditional ma...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید