نتایج جستجو برای: linear regression elevation
تعداد نتایج: 799403 فیلتر نتایج به سال:
abstract spatial prediction of soil organic carbon is a crucial proxy to manage and conserve natural resources, monitoring co2 and preventing soil erosion strategies within the landscape, regional, and global scale. the objectives of this study was to evaluate capability of artificial neural network and multivariate linear regression models in order to predict soil organic carbon using terrain ...
histamine h3 receptor subtype has been the target of several recent drug development programs. quantitative structure-activity relationship (qsar) methods are used to predict the pharmaceutically relevant properties of drug candidates whenever it is applicable. the aim of this study was to compare the predictive powers of three different qsar techniques, namely, multiple linear regression (mlr)...
AIMS/INTRODUCTION Elevation of 2-h plasma glucose (2-h PG) levels keeps step with fasting plasma glucose (FPG) levels elevation, but some individuals show dominant elevation of 2-h PG and others FPG. We analyzed dependent and independent relationships between 2-h PG and FPG, and investigated the factors regulating 2-h PG and FPG. MATERIALS AND METHODS In 1,657 Japanese participants who underw...
Spatially explicit precipitation data is often responsible for the prediction accuracy of hydrological and ecological models. Several statistical downscaling approaches have been developed to map precipitation at a high spatial resolution, which are mainly based on the valid conjugations between satellite-driven precipitation data and geospatial predictors. Performance of the existing approache...
Among the alternative Unobserved Components formulations within the stochastic state space setting, the Dynamic Harmonic Regression (DHR) model has proven to be particularly useful for adaptive seasonal adjustment, signal extraction, forecasting and back-casting of time series. First, it is shown how to obtain ARMA representations for the DHR components under a Generalized Random Walk setting f...
Clustered linear regression (CLR) is a new machine learning algorithm that improves the accuracy of classical linear regression by partitioning training space into subspaces. CLR makes some assumptions about the domain and the data set. Firstly, target value is assumed to be a function of feature values. Second assumption is that there are some linear approximations for this function in each su...
This dissertation studies the least squares estimator of a trend parameter in a simple linear regression model with multiple changepoints when the changepoint times are known. The error component in the model is allowed to be autocorrelated. The least squares estimator of the trend and the variance of the trend estimator are derived. Consistency and asymptotic normality of the trend estimator a...
PLS univariate regression is a model linking a dependent variable y to a set X= {x1; : : : ; xp} of (numerical or categorical) explanatory variables. It can be obtained as a series of simple and multiple regressions. By taking advantage from the statistical tests associated with linear regression, it is feasible to select the signi6cant explanatory variables to include in PLS regression and to ...
Designing machine learning algorithms that are robust to noise in training data has lately been a subject of intense research. A large body of work addresses stochastic noise [12, 7], while another one studies adversarial noise [11, 2] in which errors are introduced by an adversary with the explicit purpose of sabotaging the algorithm. This is often too pessimistic, and leads to negative result...
We present a linear regression method for predictions on a small data set making use of a second possibly biased data set that may be much larger. Our method fits linear regressions to the two data sets while penalizing the difference between predictions made by those two models. The resulting algorithm is a shrinkage method similar to those used in small area estimation. We find a Stein-type f...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید