نتایج جستجو برای: margin
تعداد نتایج: 34120 فیلتر نتایج به سال:
Temporal Clustering (TC) refers to the factorization of multiple time series into a set of non-overlapping segments that belong to k temporal clusters. Existing methods based on extensions of generative models such as k-means or Switching Linear Dynamical Systems (SLDS) often lead to intractable inference and lack a mechanism for feature selection, critical when dealing with high dimensional da...
In bulk electric power transfer capability computations, the transmission reliability margin accounts for uncertainties related to the transmission system conditions, contingencies, and parameter values. We propose a formula which quantifies transmission reliability margin based on transfer capability sensitivities and a probabilistic characterization of the various uncertainties. The formula i...
Maximum margin clustering (MMC), which borrows the large margin heuristic from support vector machine (SVM), has achieved more accurate results than traditional clustering methods. The intuition is that, for a good clustering, when labels are assigned to different clusters, SVM can achieve a large minimum margin on this data. Recent studies, however, disclosed that maximizing the minimum margin...
Principal Component Analysis (PCA) is a very successful dimensionality reduction technique, widely used in predictive modeling. A key factor in its widespread use in this domain is the fact that the projection of a dataset onto its first K principal components minimizes the sum of squared errors between the original data and the projected data over all possible rank K projections. Thus, PCA pro...
Schapire’s margin theory provides a theoretical explanation to the success of boosting-type methods and manifests that a good margin distribution (MD) of training samples is essential for generalization. However the statement that a MD is good is vague, consequently, many recently developed algorithms try to generate a MD in their goodness senses for boosting generalization. Unlike their indire...
Boltzmann Machines are a powerful class of undirected graphical models. Originally proposed as artificial neural networks, they can be regarded as a type of Markov Random Field in which the connection weights between nodes are symmetric and learned from data. They are also closely related to recent models such as Markov logic networks and Conditional RandomFields. Amajor challenge for Boltzmann...
In typical classification tasks, we seek a function which assigns a label to a single object. Kernel-based approaches, such as support vector machines (SVMs), which maximize the margin of confidence of the classifier, are the method of choice for many such tasks. Their popularity stems both from the ability to use high-dimensional feature spaces, and from their strong theoretical guarantees. Ho...
We present a novel discriminative approach to parsing inspired by the large-margin criterion underlying support vector machines. Our formulation uses a factorization analogous to the standard dynamic programs for parsing. In particular, it allows one to efficiently learn a model which discriminates among the entire space of parse trees, as opposed to reranking the top few candidates. Our models...
In classification problems, Support Vector Machines maximize the margin of separation between two classes. While the paradigm has been successful, the solution obtained by SVMs is dominated by the directions with large data spread and biased to separate the classes by cutting along large spread directions. This article proposes a novel formulation to overcome such sensitivity and maximizes the ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید