نتایج جستجو برای: methods of ordinary differential equations
تعداد نتایج: 21255551 فیلتر نتایج به سال:
Although Elzaki transform is stronger than Sumudu and Laplace transforms to solve the ordinary differential equations withnon-constant coefficients, but this method does not lead to finding the answer of some differential equations. In this paper, a method is introduced to find that a differential equation by Elzaki transform can be solved?
In this paper we propose a method for solving some well-known classes of Lane-Emden type equations which are nonlinear ordinary differential equations on the semi-innite domain. The proposed approach is based on an Unsupervised Combined Articial Neural Networks (UCANN) method. Firstly, The trial solutions of the differential equations are written in the form of feed-forward neural networks cont...
The application of standard multigrid methods for the solution of the Navier-Stokes equations in complicated domains causes problems in two ways. First, coarsening is not possible to full extent since the geometry must be resolved by the coarsest grid used, and second, for semiimplicit time stepping schemes, robustness of the convergence rates is usually not obtained for the arising convection-...
In this paper, we consider solving the coupled systems of discrete equations which arise from implicit time stepping procedures for the time dependent Stokes equations using a mixed nite element spatial discretization. At each time step, a two by two block system corresponding to a perturbed Stokes problem must be solved. Although there are a number of techniques for iteratively solving this ty...
In this paper, the variational iteration method for solving nth-order fuzzy integro differential equations (nth-FIDE) is proposed. In fact the problem is changed to the system of ordinary fuzzy integro-differential equations and then fuzzy solution of nth-FIDE is obtained. Some examples show the efficiency of the proposed method.
In this research, Fischer Tropsch synthesis (FTS) has been modeled in the fixed bed chromatographic reactor for the first time by applying a rather complex dispersed plug flow model for fluid phase and linear driving force (LDF) model for adsorbent. Model equations are dynamic, multi-component, non-linear and heterogeneous including reaction and adsorption simultaneously Complex kinetics fo...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید